- •1.Металлы, особенности атомно-кристаллического строения.
- •2.Изотропия, анизотропия, аллотропия (полиморфные превращения) металлов.
- •3.Строение реальных кристаллов. Точечные, линейные дефекты. Дислокации: краевые, винтовые.
- •4.Кристаллизация металлов. Изменение свободной энергии в зависимости от температуры. Кривые охлаждения. Критические точки.
- •5.Механизм и закономерности кристаллизации металлов. Условия получения мелкозернистой структуры.
- •6. Изучение структуры металлов и сплавов. Определение химического состава. Физические методы исследования.
- •7.Физическая природа деформации металлов. Разрушение металлов.
- •Разрушение металлов.
- •8.Механические свойства металлов и сплавов. Способы определения их количественных характеристик.
- •9.Технологические и эксплуатационные свойства металлов и сплавов.
- •10.Влияние пластической деформации на структуру и свойства металлов: наклеп. Возврат, рекристаллизация.
- •11.Основные понятия теории сплавов. Особенности строения, кристаллизации и свойств сплавов.
- •12.Классификация сплавов твердых растворов. Диаграмма состояния сплава (д.С.С.).
- •13.Д.С.С. С неограниченной растворимостью компонентов в твердом состоянии.
- •14.Д.С.С. С отсутствием растворимости компонентов в твердом состоянии.
- •15.Д.С.С.С ограниченной растворимостью компонентов в твердом состоянии.
- •16.Связь между свойствами сплавов и типом д.С.С.
- •17.Диаграмма состояния железо - углерод (цементит). Компоненты и фазы железоуглеродистых сплавов.
- •18.Диаграмма состояния железо - углерод (цементит). Структуры железоуглеродистых сплавов: стали, чугуны.
- •19.Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •20.Чугуны. Классификация и маркировка чугунов.
- •21.Чугуны. Процесс графитизации. Влияние графита на механические свойства чугунов.
- •22.Термическая обработка. Этапы и виды термической обработки.
- •23.Распад переохлажденного аустенита. Кривые распада.
- •24.Отпуск сталей. Виды отпуска.
- •25.Химико-термическая обработка сталей.
- •26.Поверхностное упрочнение стальных деталей.
- •27.Легированные стали (лс). Преимущества и недостатки лс. Влияние легирующих элементов (лэ) на структуру и свойства стали.
- •28.Классификация лс.
- •29.Электрохимическая и химическая коррозия.
- •30.Классификация коррозионно-стойких сталей и сплавов.
- •31.Жаростойкие и жаропрочные стали и сплавы.
- •32.Цветные металлы (цв). Алюминий, магний, медь, титан и сплавы на их основе.
- •33.Композиционные материалы.
- •34.Пластические массы.
- •Свойства
- •Получение
- •Методы обработки
- •35.Типы связей в веществе. Классификация материалов в электротехнике.
- •Энергия связи
- •Свойства материала по видам химической связи.
- •Классификация материалов.
- •36.Зонная теория строения твердого тела и классификация материалов.
- •Физические основы зонной теории
- •Зонная структура различных материалов
- •37.Полупроводники, электропроводность полупроводников и зависимость её от внешних факторов.
- •38.Процессы в диэлектриках в электрическом поле и электрические характеристики диэлектриков.
- •39.Поляризация диэлектриков, диэлектрическая проницаемость . Упругие виды поляризации.
- •40.Медленные (неупругие) виды поляризации.
- •41.Классификация диэлектриков по видам поляризации.
- •42.Электропроводность диэлектриков. Собственная и примесная проводимость; удельное объемное и удельное поверхностное сопротивления.
- •43.Зависимость электропроводности диэлектриков от температуры.
- •44.Зависимость электропроводности диэлектриков от напряженности.
- •45.Диэлектрические потери в нейтральных диэлектриках.
- •46.Диэлектрические потери в полярных диэлектриках.
- •47.Пробой диэлектриков. Механизм пробоя.
- •48.Пробой газов в однородном поле.
- •49.Пробой газов в неоднородном поле.
- •50.Пробой жидких диэлектриков.
- •51.Пробой твердых диэлектриков.
- •52.Пайка металлов, припои, флюсы.
- •53.Сварка материалов. Виды сварки.
- •54.Магнитные свойства материалов. Магнитно-твердые материалы.
- •55.Магнитно-мягкие материалы.
7.Физическая природа деформации металлов. Разрушение металлов.
Деформацией называется изменение формы и размеров тела под действием напряжений.
Напряжение - сила, действующая на единицу плошади сечения детали.
Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д.. а также в результате фазовых (структурных) превращений, усадки и других физико-химических процессов, протекающих в металлах, и связанных с изменением объема.
Металл, находящийся в напряженном состоянии, при любом виде нагружения всегда испытывает напряжения нормальные и касательные.
Рост нормальных и касательных напряжений приводит к разным последствиям. Рост нормальных напряжений приводит к хрупкому разрушению. Пластическую деформацию вызывают касательные напряжения.
Деформация металла под действием напряжений может быть упругой и пластической.
Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений.
При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает.
Если нормальные напряжения достигают значения сил межатомных связей, то наблюдается хрупкое разрушение путем отрыва.
Зависимость между упругой деформацией и напряжением выражается законом Гука
где: Е - модуль упругости.
Модуль упругости является важнейшей характеристикой упругих свойств металла. По физической природе величина модуля упругости рассматривается как мера прочности связей между атомами в твердом теле.
Эта механическая характеристика структурно нечувствительна, т. е. термическая обработка или другие способы изменения структуры не изменяют модуля упругости, а повышение температуры, изменяющее межатомные расстояния, снижает модуль упругости.
Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.
При пластическом деформировании одна часть кристалла перемещается по отношению к другой под действием касательных напряжений. При снятии нагрузок сдвиг остается, т.е. происходит пластическая деформация.
В результате развития пластической деформации может произойти вязкое разрушение путем сдвига.
Разрушение металлов.
Процесс деформации при достижении высоких напряжений завершается разрушением. Тела разрушаются по сечению не одновременно, а вследствие развития трещин. Разрушение включает три стадии: зарождение трещины, ее распространение через сечение, окончательное разрушение.
Различают хрупкое разрушение - отрыв одних слоев атомов от других под действием нормальных растягивающих напряжений. Отрыв не сопровождается предварительной деформацией. Механизм зарождения трещины одинаков - благодаря скоплению движущихся дислокаций перед препятствием (границы субзерен, фазовые границы), что приводит к концентрации напряжений, достаточной для образования трещины. Когда напряжения достигают определенного значения, размер трещины становится критическим и дальнейший рост осуществляется произвольно.
Для хрупкого разрушения характерна острая, часто ветвящаяся трещина. Величина зоны пластической деформации в устье трещины мала. Скорость распространения хрупкой трещины велика - близка к скорости звука (внезапное, катастрофическое разрушение). Энергоемкость хрупкого разрушения мала, а работа распространения трещины близка к нулю.
Различают транскристаллитное разрушение - трещина распространяется по телу зерна, интеркристаллитное - по границам зерен (всегда хрупкое).
Результатом хрупкого разрушения является блестящий светлый кристаллический излом с ручьистым строением. Хрупкая трещина распространяется по нескольким параллельным плоскостям. Плоскость излома перпендикулярна нормальным напряжениям.
Вязкое разрушение - путем среза под действием касательных напряжений. Ему всегда предшествует значительная пластическая деформация.
Трещина тупая раскрывающаяся. Величина пластической зоны впереди трещины велика. Малая скорость распространения трещины. Энергоемкость значительная, энергия расходуется на образование поверхностей раздела и на пластическую деформацию. Большая работа затрачивается на распространение трещины. Поверхность излома негладкая, рассеивает световые лучи, матовая (волокнистый) излом. Плоскость излома располагается под углом.