- •1.Металлы, особенности атомно-кристаллического строения.
- •2.Изотропия, анизотропия, аллотропия (полиморфные превращения) металлов.
- •3.Строение реальных кристаллов. Точечные, линейные дефекты. Дислокации: краевые, винтовые.
- •4.Кристаллизация металлов. Изменение свободной энергии в зависимости от температуры. Кривые охлаждения. Критические точки.
- •5.Механизм и закономерности кристаллизации металлов. Условия получения мелкозернистой структуры.
- •6. Изучение структуры металлов и сплавов. Определение химического состава. Физические методы исследования.
- •7.Физическая природа деформации металлов. Разрушение металлов.
- •Разрушение металлов.
- •8.Механические свойства металлов и сплавов. Способы определения их количественных характеристик.
- •9.Технологические и эксплуатационные свойства металлов и сплавов.
- •10.Влияние пластической деформации на структуру и свойства металлов: наклеп. Возврат, рекристаллизация.
- •11.Основные понятия теории сплавов. Особенности строения, кристаллизации и свойств сплавов.
- •12.Классификация сплавов твердых растворов. Диаграмма состояния сплава (д.С.С.).
- •13.Д.С.С. С неограниченной растворимостью компонентов в твердом состоянии.
- •14.Д.С.С. С отсутствием растворимости компонентов в твердом состоянии.
- •15.Д.С.С.С ограниченной растворимостью компонентов в твердом состоянии.
- •16.Связь между свойствами сплавов и типом д.С.С.
- •17.Диаграмма состояния железо - углерод (цементит). Компоненты и фазы железоуглеродистых сплавов.
- •18.Диаграмма состояния железо - углерод (цементит). Структуры железоуглеродистых сплавов: стали, чугуны.
- •19.Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •20.Чугуны. Классификация и маркировка чугунов.
- •21.Чугуны. Процесс графитизации. Влияние графита на механические свойства чугунов.
- •22.Термическая обработка. Этапы и виды термической обработки.
- •23.Распад переохлажденного аустенита. Кривые распада.
- •24.Отпуск сталей. Виды отпуска.
- •25.Химико-термическая обработка сталей.
- •26.Поверхностное упрочнение стальных деталей.
- •27.Легированные стали (лс). Преимущества и недостатки лс. Влияние легирующих элементов (лэ) на структуру и свойства стали.
- •28.Классификация лс.
- •29.Электрохимическая и химическая коррозия.
- •30.Классификация коррозионно-стойких сталей и сплавов.
- •31.Жаростойкие и жаропрочные стали и сплавы.
- •32.Цветные металлы (цв). Алюминий, магний, медь, титан и сплавы на их основе.
- •33.Композиционные материалы.
- •34.Пластические массы.
- •Свойства
- •Получение
- •Методы обработки
- •35.Типы связей в веществе. Классификация материалов в электротехнике.
- •Энергия связи
- •Свойства материала по видам химической связи.
- •Классификация материалов.
- •36.Зонная теория строения твердого тела и классификация материалов.
- •Физические основы зонной теории
- •Зонная структура различных материалов
- •37.Полупроводники, электропроводность полупроводников и зависимость её от внешних факторов.
- •38.Процессы в диэлектриках в электрическом поле и электрические характеристики диэлектриков.
- •39.Поляризация диэлектриков, диэлектрическая проницаемость . Упругие виды поляризации.
- •40.Медленные (неупругие) виды поляризации.
- •41.Классификация диэлектриков по видам поляризации.
- •42.Электропроводность диэлектриков. Собственная и примесная проводимость; удельное объемное и удельное поверхностное сопротивления.
- •43.Зависимость электропроводности диэлектриков от температуры.
- •44.Зависимость электропроводности диэлектриков от напряженности.
- •45.Диэлектрические потери в нейтральных диэлектриках.
- •46.Диэлектрические потери в полярных диэлектриках.
- •47.Пробой диэлектриков. Механизм пробоя.
- •48.Пробой газов в однородном поле.
- •49.Пробой газов в неоднородном поле.
- •50.Пробой жидких диэлектриков.
- •51.Пробой твердых диэлектриков.
- •52.Пайка металлов, припои, флюсы.
- •53.Сварка материалов. Виды сварки.
- •54.Магнитные свойства материалов. Магнитно-твердые материалы.
- •55.Магнитно-мягкие материалы.
23.Распад переохлажденного аустенита. Кривые распада.
При закалке, нормализации и отжиге происходит распад переохлажденного аустенита, при этом возможны три типа превращений: перлитное, промежуточное (бейнитное), мартенситное. Легирующие элементы существенно влияют на кинетику механизм этих превращений.
Свойства и строение продуктов превращения аустенита зависят от температуры, при которой происходил процесс его распада.
При высоких температурах, т.е. при малых степенях переохлаждения, получается достаточно грубая смесь феррита и цементита. Эта смесь называется перлитом.
При более низких температурах, и, следовательно при больших степенях переохлаждения дисперсность структур возрастает и твердость продуктов повышается. Мелкопластинчатый перлит, образующийся при температурах 650÷600°С, называется сорбитом.
В районе выступа кривых начала и конца распада получается очень тонкодисперсный перлит, который называется трооститом (троститом).
Таким образом, перлит, сорбит и тростит – структуры с одинаковой природой (феррит + цементит), которые отличаются степенью дисперсности феррита и цементита.
Перлитные структуры могут быть двух типов: зернистые (цементит находится в форме зернышек) или пластинчатые (в форме пластинок). Однородный (гомогенный) аустенит всегда превращается в пластинчатый перлит. Следовательно, нагрев до высокой температуры, который создает условия для образования более однородной структуры, способствует появлению пластинчатых структур. Неоднородный аустенит при всех степенях переохлаждения дает зернистый перлит, следовательно, нагрев до невысокой температуры (для заэвтектоидной стали ниже Ас3) ведет к образованию при охлаждении зернистого перлита.
Таким образом, размер цементитных частиц зависит от температуры превращения аустенита, а форма цементита – от температуры нагрева.
Ниже выступа кривых начала и конца распада аустенита превращение происходит в особую структуру, называемую бейнитом. Он также состоит из мелкодисперсных частиц феррита и цементита. Превращение аустенита в бейнит происходит при относительно низких температурах. Превращение сопровождается увеличением объема, приводящим к большим внутренним напряжениям.
В связи с различным строением продукты распада аустенита обладают разными механическими свойствами. Перлит наиболее пластичен, но твердость и прочность его ниже, чем у остальных структур. По мере повышения дисперсности строения прочность возрастает, а пластические свойства снижаются.
Если охлаждать аустенит со скоростью больше, чем νк (νк – кривая охлаждения, касательная выступу С – кривой), то это приведет к образованию мартенсита.
24.Отпуск сталей. Виды отпуска.
Отпуском называется операция термической обработки, состоящая в нагреве закаленной стали до температуры ниже критической АC1, выдержке при этой температуре и последующем медленном или быстром охлаждении. Цель отпуска — устранить или уменьшить напряжения в стали, повысить вязкость и понизить твердость.
Отпуск является заключительной операцией термической обработки, и правильное выполнение его в значительной степени определяет качество готовой закаленной детали.
В зависимости от температуры нагрева различают низкий, средний и высокий отпуск.
Низкий отпуск достигается нагревом до температуры 150—250° С, выдержкой при этой температуре и последующим охлаждением на воздухе. При выдержке во время отпуска в указанном интервале температур мартенсит закалки превращается в мартенсит отпуска, при этом внутренние напряжения частично снимаются и остаточный аустенит превращается в мартенсит отпуска.
В результате низкого отпуска сталь сохраняет высокую твердость, а иногда твердость повышается за счет распада остаточного аустенита; устраняется закалочная хрупкость. Такой отпуск применяют для режущего инструмента и изделий, которым необходима высокая твердость. Превращение мартенсита закалки в мартенсит отпуска способствует стабилизации размеров детали, что необходимо для измерительного инструмента, изготовляемого из инструментальной стали. Этому инструменту также дают низкий отпуск.
Средний отпуск производят при 300—500° С. Твердость стали заметно понижается, вязкость увеличивается. Средний отпуск применяют для пружин, рессор, а также инструмента, который должен иметь значительную прочность и упругость при средней твердости.
Высокий отпуск происходит при 500—600° С, его основное назначение — получить наибольшую вязкость при достаточных пределах прочности и упругости стали. Применяют этот вид отпуска для деталей из конструкционных сталей, подвергающихся действию высоких напряжений, особенно при ударной нагрузке
Для деталей различных машин и станков обычно применяют термическую обработку, состоящую в закалкеспоследующим высоким отпуском при температуре, обеспечивающей получение сорбита отпуска и хорошего сочетания прочностных и пластических свойств.
Такая термическая обработка называется «улучшением стали».
Нагрев при отпуске можно производить в тех же печах, которые применяют для других видов термической обработки, но он требует более равномерной температуры и более точного контроля.