- •1.Металлы, особенности атомно-кристаллического строения.
- •2.Изотропия, анизотропия, аллотропия (полиморфные превращения) металлов.
- •3.Строение реальных кристаллов. Точечные, линейные дефекты. Дислокации: краевые, винтовые.
- •4.Кристаллизация металлов. Изменение свободной энергии в зависимости от температуры. Кривые охлаждения. Критические точки.
- •5.Механизм и закономерности кристаллизации металлов. Условия получения мелкозернистой структуры.
- •6. Изучение структуры металлов и сплавов. Определение химического состава. Физические методы исследования.
- •7.Физическая природа деформации металлов. Разрушение металлов.
- •Разрушение металлов.
- •8.Механические свойства металлов и сплавов. Способы определения их количественных характеристик.
- •9.Технологические и эксплуатационные свойства металлов и сплавов.
- •10.Влияние пластической деформации на структуру и свойства металлов: наклеп. Возврат, рекристаллизация.
- •11.Основные понятия теории сплавов. Особенности строения, кристаллизации и свойств сплавов.
- •12.Классификация сплавов твердых растворов. Диаграмма состояния сплава (д.С.С.).
- •13.Д.С.С. С неограниченной растворимостью компонентов в твердом состоянии.
- •14.Д.С.С. С отсутствием растворимости компонентов в твердом состоянии.
- •15.Д.С.С.С ограниченной растворимостью компонентов в твердом состоянии.
- •16.Связь между свойствами сплавов и типом д.С.С.
- •17.Диаграмма состояния железо - углерод (цементит). Компоненты и фазы железоуглеродистых сплавов.
- •18.Диаграмма состояния железо - углерод (цементит). Структуры железоуглеродистых сплавов: стали, чугуны.
- •19.Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •20.Чугуны. Классификация и маркировка чугунов.
- •21.Чугуны. Процесс графитизации. Влияние графита на механические свойства чугунов.
- •22.Термическая обработка. Этапы и виды термической обработки.
- •23.Распад переохлажденного аустенита. Кривые распада.
- •24.Отпуск сталей. Виды отпуска.
- •25.Химико-термическая обработка сталей.
- •26.Поверхностное упрочнение стальных деталей.
- •27.Легированные стали (лс). Преимущества и недостатки лс. Влияние легирующих элементов (лэ) на структуру и свойства стали.
- •28.Классификация лс.
- •29.Электрохимическая и химическая коррозия.
- •30.Классификация коррозионно-стойких сталей и сплавов.
- •31.Жаростойкие и жаропрочные стали и сплавы.
- •32.Цветные металлы (цв). Алюминий, магний, медь, титан и сплавы на их основе.
- •33.Композиционные материалы.
- •34.Пластические массы.
- •Свойства
- •Получение
- •Методы обработки
- •35.Типы связей в веществе. Классификация материалов в электротехнике.
- •Энергия связи
- •Свойства материала по видам химической связи.
- •Классификация материалов.
- •36.Зонная теория строения твердого тела и классификация материалов.
- •Физические основы зонной теории
- •Зонная структура различных материалов
- •37.Полупроводники, электропроводность полупроводников и зависимость её от внешних факторов.
- •38.Процессы в диэлектриках в электрическом поле и электрические характеристики диэлектриков.
- •39.Поляризация диэлектриков, диэлектрическая проницаемость . Упругие виды поляризации.
- •40.Медленные (неупругие) виды поляризации.
- •41.Классификация диэлектриков по видам поляризации.
- •42.Электропроводность диэлектриков. Собственная и примесная проводимость; удельное объемное и удельное поверхностное сопротивления.
- •43.Зависимость электропроводности диэлектриков от температуры.
- •44.Зависимость электропроводности диэлектриков от напряженности.
- •45.Диэлектрические потери в нейтральных диэлектриках.
- •46.Диэлектрические потери в полярных диэлектриках.
- •47.Пробой диэлектриков. Механизм пробоя.
- •48.Пробой газов в однородном поле.
- •49.Пробой газов в неоднородном поле.
- •50.Пробой жидких диэлектриков.
- •51.Пробой твердых диэлектриков.
- •52.Пайка металлов, припои, флюсы.
- •53.Сварка материалов. Виды сварки.
- •54.Магнитные свойства материалов. Магнитно-твердые материалы.
- •55.Магнитно-мягкие материалы.
54.Магнитные свойства материалов. Магнитно-твердые материалы.
МАГНИТОТВЕРДЫЕ МАТЕРИА́ЛЫ (магнитожесткие материалы), магнитные материалы, характеризующиеся высокими значениями коэрцитивной силы Hc. Качество магнитотвердых материалов характеризуют также значения остаточной магнитной индукции Br, максимальной магнитной энергии, отдаваемой материалом в пространство Wm и коэффициента выпуклости. Материалы также должны иметь высокую временную и температурную стабильность перечисленных параметров и удовлетворительные прочность и пластичность. В различных магнитотвердых материалах природа высоких значений коэрцитивной силы определяется одним из трех механизмов задержки процессов перемагничивания в ферромагнетиках: необратимым вращением намагниченности магнитных доменов, задержкой образования и (или) роста зародышей перемагничивания и закреплением доменных стенок на различных неоднородностях и структурных несовершенствах кристалла.
Коэрцитивная сила – это напряжение магнитного поля которое необходимо приложить к ферромаг
Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания. Это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.
Все материалы по их магнитным свойствам принято разделять на парамагнетики, диамагнетики и ферромагнетики.
Парамагнетики усиливают внешнее магнитное поле, поскольку молекулярные токи в веществе ориентируются так, что создаваемое ими магнитное поле совпадает с внешним. К парамагнетикам относят олово (=1,000004), марганец (=1,0037), платину (=1,000364), алюминий(=1,000023) и др.
Диамагнетики – это вещества, молекулярные токи которых ориентируются так, что создаваемое ими магнитное поле ослабляет внешнее магнитное поле. К ним можно причислить медь (=0,999895), цинк, кадмий, висмут, сурьму, воду и др.
Ферромагнетики значительно усиливают внешнее магнитное поле, причем магнитная проницаемость меняется в зависимости от напряженности поля и от характера обработки материала. Ферромагнетики- это железо, никель, кобальт, а так же сталь, чугун и некоторые другие сплавы.
Относительная магнитная проницаемость парамагнетиков и диамагнетиков близка к единице и практически не меняется при изменении напряженности поля.
55.Магнитно-мягкие материалы.
Магнитомягкие материалы, магнитно-мягкие материалы — материалы, обладающие свойствами ферромагнетика или ферримагнетика, причём их коэрцитивная сила по индукции составляет не более 4 кА/м. Такие материалы также обладают высокой магнитной проницаемостью и малыми потерями на гистерезис.
Магнитомягкие материалы используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в других случаях, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитомягкие материалы с повышенным удельным электрическим сопротивлением, обычно применяются в виде магнитопроводов, собранных из отдельных изолированных друг от друга тонких листов. Листы изолируются лаком друг от друга. Такое исполнение сердечника называется шихтованным.