- •1.Металлы, особенности атомно-кристаллического строения.
- •2.Изотропия, анизотропия, аллотропия (полиморфные превращения) металлов.
- •3.Строение реальных кристаллов. Точечные, линейные дефекты. Дислокации: краевые, винтовые.
- •4.Кристаллизация металлов. Изменение свободной энергии в зависимости от температуры. Кривые охлаждения. Критические точки.
- •5.Механизм и закономерности кристаллизации металлов. Условия получения мелкозернистой структуры.
- •6. Изучение структуры металлов и сплавов. Определение химического состава. Физические методы исследования.
- •7.Физическая природа деформации металлов. Разрушение металлов.
- •Разрушение металлов.
- •8.Механические свойства металлов и сплавов. Способы определения их количественных характеристик.
- •9.Технологические и эксплуатационные свойства металлов и сплавов.
- •10.Влияние пластической деформации на структуру и свойства металлов: наклеп. Возврат, рекристаллизация.
- •11.Основные понятия теории сплавов. Особенности строения, кристаллизации и свойств сплавов.
- •12.Классификация сплавов твердых растворов. Диаграмма состояния сплава (д.С.С.).
- •13.Д.С.С. С неограниченной растворимостью компонентов в твердом состоянии.
- •14.Д.С.С. С отсутствием растворимости компонентов в твердом состоянии.
- •15.Д.С.С.С ограниченной растворимостью компонентов в твердом состоянии.
- •16.Связь между свойствами сплавов и типом д.С.С.
- •17.Диаграмма состояния железо - углерод (цементит). Компоненты и фазы железоуглеродистых сплавов.
- •18.Диаграмма состояния железо - углерод (цементит). Структуры железоуглеродистых сплавов: стали, чугуны.
- •19.Углеродистые стали. Классификация и маркировка углеродистых сталей.
- •20.Чугуны. Классификация и маркировка чугунов.
- •21.Чугуны. Процесс графитизации. Влияние графита на механические свойства чугунов.
- •22.Термическая обработка. Этапы и виды термической обработки.
- •23.Распад переохлажденного аустенита. Кривые распада.
- •24.Отпуск сталей. Виды отпуска.
- •25.Химико-термическая обработка сталей.
- •26.Поверхностное упрочнение стальных деталей.
- •27.Легированные стали (лс). Преимущества и недостатки лс. Влияние легирующих элементов (лэ) на структуру и свойства стали.
- •28.Классификация лс.
- •29.Электрохимическая и химическая коррозия.
- •30.Классификация коррозионно-стойких сталей и сплавов.
- •31.Жаростойкие и жаропрочные стали и сплавы.
- •32.Цветные металлы (цв). Алюминий, магний, медь, титан и сплавы на их основе.
- •33.Композиционные материалы.
- •34.Пластические массы.
- •Свойства
- •Получение
- •Методы обработки
- •35.Типы связей в веществе. Классификация материалов в электротехнике.
- •Энергия связи
- •Свойства материала по видам химической связи.
- •Классификация материалов.
- •36.Зонная теория строения твердого тела и классификация материалов.
- •Физические основы зонной теории
- •Зонная структура различных материалов
- •37.Полупроводники, электропроводность полупроводников и зависимость её от внешних факторов.
- •38.Процессы в диэлектриках в электрическом поле и электрические характеристики диэлектриков.
- •39.Поляризация диэлектриков, диэлектрическая проницаемость . Упругие виды поляризации.
- •40.Медленные (неупругие) виды поляризации.
- •41.Классификация диэлектриков по видам поляризации.
- •42.Электропроводность диэлектриков. Собственная и примесная проводимость; удельное объемное и удельное поверхностное сопротивления.
- •43.Зависимость электропроводности диэлектриков от температуры.
- •44.Зависимость электропроводности диэлектриков от напряженности.
- •45.Диэлектрические потери в нейтральных диэлектриках.
- •46.Диэлектрические потери в полярных диэлектриках.
- •47.Пробой диэлектриков. Механизм пробоя.
- •48.Пробой газов в однородном поле.
- •49.Пробой газов в неоднородном поле.
- •50.Пробой жидких диэлектриков.
- •51.Пробой твердых диэлектриков.
- •52.Пайка металлов, припои, флюсы.
- •53.Сварка материалов. Виды сварки.
- •54.Магнитные свойства материалов. Магнитно-твердые материалы.
- •55.Магнитно-мягкие материалы.
38.Процессы в диэлектриках в электрическом поле и электрические характеристики диэлектриков.
Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.
В диэлектриках практически нет свободных электронов поэтому ток по ним не проходит. Внесём в электрическое поле, которое назовём внешним пластинку диэлектрика, например стекла.
Под влиянием внешнего электрического поля происходит поляризация диэлектрика.
Это значит, что электроны в атомах начинают вращаться по вытянутым орбитам. В результате, на нашем рисунке левая поверхность имеет отрицательный заряд, а правая поверхность имеет положительный заряд. Между этими зарядами внутри диэлектрика возникает своё электрическое поле, которое назовём внутренним. Таким образом, внутри пластинки диэлектрика будут одновременно два поля- внешнее и внутреннее, противоположные по направлению. Напряжённость результирующего электрического поля равна напряжённости большего поля минус напряженность меньшего поля.
Пояснение: Напряжённость внутреннего поля в диэлектриках всегда меньше напряжённости внешнего поля.
Число, показывающее во сколько раз напряжённость электрического поля в диэлектрике меньше чем в вакууме, называется диэлектрической проницаемостью ε (эпсилон).
диэлектрик |
ε |
Вакуум |
1,0 |
Воздух |
1,00059 |
Бумага |
3,0-3,5 |
Каучук |
2-3 |
Парафин |
2,1-2,2 |
Гетинакс |
4-5 |
Слюда |
4-7,5 |
Дерево |
4,5-5 |
Фарфор |
6-6,5 |
Стекло |
5,5-10 |
Вода |
81 |
Керосин |
6-6,5 |
|
|
Электрические характеристики диэлектриков
Объемное сопротивление — сопротивление диэлектрика при прохождении через него постоянного тока. Для плоского диэлектрика оно равно:
Rv = ρv (d / S), Ом
где ρv - удельное объемное сопротивление диэлектрика, представляющее собой сопротивление куба с ребром 1 см при прохождении постоянного тока через две противоположные грани диэлектрика, Ом-см, S — площадь сечения диэлектрика, через которое проходит ток (площадь электродов), см2, d - толщина диэлектрика (расстояние между электродами), см.
Поверхностное сопротивление диэлектрика
Поверхностное сопротивление - сопротивление диэлектрика при прохождении тока по его поверхности. Это сопротивление составляет:
Rs = ρs (l / S), Ом
где ps - удельное поверхностное сопротивление диэлектрика, представляющее собой сопротивление квадрата (любых размеров) при прохождении постоянного тока от одной его стороны к противоположной, Ом, l- длина поверхности диэлектрика (в направлении прохождения тока), см, S — ширина поверхности диэлектрика (в направлении, перпендикулярном прохождению тока), см.
Диэлектрическая проницаемость.
Как известно, емкость конденсатора - диэлектрика, заключенного между двумя параллельно расположенными и находящимися друг против друга металлическими обкладками (электродами), составляет:
С = (ε S) / (4π l), см,
где ε - относительная диэлектрическая проницаемость материала, равная отношению емкости конденсатора с данным диэлектриком к емкости конденсатора таких же геометрических размеров, но диэлектриком которого является воздух (вернее вакуум); S - площадь электрода конденсатора, см2, l - толщина диэлектрика, заключенного между электродами, см.
Угол диэлектрических потерь
Потеря мощности в диэлектрике при приложении к нему переменного тока составляет:
Pa = U х Ia, Вт
где U - приложенное напряжение, Ia - активная составляющая тока, проходящего через диэлектрик, А.
Как известно: Ia = Iр / tgφ = Iрх tgδ, А, Iр = U2πfC
где Iр - реактивная составляющая тока, проходящего через диэлектрик, А, С - емкость конденсатора, см, f - частота тока, гц, φ - угол, на который вектор тока, проходящий через диэлектрик, опережает вектор напряжения, приложенного к этому диэлектрику, град, δ - угол, дополняющий φ до 90° (угол диэлектрических потерь, град).
Таким образом, величина потери мощности определяется:
Pa = U22πfCtgδ, Вт
Большое практическое значение имеет вопрос зависимости tgδ от величины приложенного напряжения (кривая ионизации).
При однородной изоляции, не имеющей расслоений и растрескиваний, tgδ почти не зависит от величины приложенного напряжения; при наличии расслоений и растрескиваний с увеличением приложенного напряжения tgδ резко возрастает из-за ионизации промежутков, заключенных внутри изоляции.
Периодическое измерение угла диэлектрических потерь (tgδ) и его сравнивание с результатами предыдущих замеров характеризуют состояние изоляции, степень и интенсивность ее старения.
Электрическая прочность диэлектрика
В электроустановках диэлектрики, образующие изоляцию обмоток, должны противостоять действию электрического поля. Интенсивность (напряженность) тюля возрастает с увеличением напряжения, создающего это поле, и, когда напряженность поля достигает критической величины, диэлектрик теряет свои электроизоляционные свойства происходит так называемый пробой диэлектрика.
Напряжение, при котором происходит пробой, называется пробивным напряжением, а соответствующая ему напряженность поля - электрической прочностью диэлектрика.
Численное значение электрической прочности равно отношению величины пробивного напряжения к толщине диэлектрика в месте пробоя:
Eпр = Uпр / l, кВ / мм,
где Uпр - пробивное напряжение, кВ, l - толщина изоляции в месте пробоя, мм.