Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СХЕМОТЕХНИКА ЭВМ.шпора 3сЁ.doc
Скачиваний:
7
Добавлен:
24.09.2019
Размер:
13.91 Mб
Скачать

6. Мультиплексоры

Мультиплексор – это функциональный узел, осуществляющий подключение (коммутацию) одного из нескольких входов данных к выходу. Номер выбранного входа соответствует коду, поданному на адресные входы мультиплексора. Аналогично дешифраторам, мультиплексоры бывают полными и неполными.

В мультиплексоре имеются информационные, адресные входы и, как правило, разрешающие (стробирующие). Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.

Мультиплексоры обозначают как MUX (от англ. multiplexor) или MS (от англ. multiplexor selector). Схематически мультиплексор можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства.

Рассмотрим функционирование четырехвходового мультиплексора (4→1), который условно изображен в виде коммутатора.

Исходя из таблицы, можно записать следующее уравнение:

Y = D0( ) + D1(A0 ) + D2( A1) + D3(A0A1). (21.1)

Мультиплексор предназначен для коммутации N каналов входных сигналов на одно устройство обработки в задаваемой очередности.

Мультиплексор можно использовать в качестве универсального логического элемента для реализации любой функции с числом переменных, равным числу адресных входов мультиплексора.

Каскадное включение мультиплексоров

Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах,

сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.

Дешифратор – одно из широко используемых логических устройств. Его применяют для построения различных комбинационных устройств. Это обусловлено тем, что на выходе дешифратора вырабатываются все возможные логические произведения всех входных переменных. Подключая к определенным выводам дешифратора логический элемент ИЛИ или используя дешифратор с открытым выходом и реализуя на нем «монтажное ИЛИ», можно реализовать любую логическую функцию.

Одно из применений дешифраторов – управление светодиодными индикаторами. Дешифратор ИД9 предназначен для управления неполной светодиодной матрицей .

7. Демультиплексоры

Демультиплексором (DMX или DMS) называют функциональный узел, который обеспечивает передачу цифровой информации, поступающей по одной линии, на несколько выходных линий. Выбор выходной линии осуществляется при помощи сигналов, поступающих на адресные входы. Таким образом, демультиплексор выполняет преобразование, обратное действию мультиплексора. Аналогично мультиплексорам, демультиплексоры бывают полными и неполными.

Рассмотрим функционирование демультиплексора, имеющего четыре выхода, состояние его входов и выходов приведено в таблице

Из этой таблицы следует:

Y0 = D( ); Y1 = D(A0 ); Y2 = D( A1); Y3 = D(A0A1).

Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров.

При наличии на адресных шинах А0 и А1 нулей информационный вход X подключен к верхнему выходу DMX и в зависимости от состояния адресных шин А2 и А3 он может быть подключен к одному из выходов DMX1. Так, при А2 = А3 = 0 вход X подключен к Y3. При A0 = 1 и A1 = 0 вход X подключен к DMX2, в зависимости от состояния А2 и А3 вход соединяется с одним из выходов Y4 → Y7 и т. д.

Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы – ИД.

Дешифратор

может быть использован как демультиплексор, т.е. функциональный узел комбинационного типа, позволяющий коммутировать двоичный сигнал из одного в N каналов. При этом номер коммутируемого канала определяется адресным двоичным кодом. Так, комбинация X3, X2, X1, X0 определяет номер выхода дешифратора, который может быть скоммутирован с одним из входов E1 или E2. Например, при подаче E2=0 информация по E1 передается на соответствующий выход дешифратора. Остальные выходы постоянно находятся в состоянии логической единицы. Так, при X3, X2, X1, X0 = 0101 информация со входа «D» поступает на пятый выход дешифратора, причем в случае необходимости второй вход стробирования может быть использован для выборки ИС – дешифратора, например с целью увеличения количества коммутируемых каналов. В этом случае можно поступить так же, как и при увеличении разрядности дешифратора.

Так мультиплексор-демультиплексор

содержит два четырехвходовых мультиплексора 4→1, которые могут использоваться и как демультиплексоры 1→4.

Микросхема содержит один общий инверсный вход разрешения (стробирования) и два общих адресных входа. При логической 1 на входе разрешения выходы отключаются от информационных входов и переходят в высокоимпедансное состояние.

При активизации входа разрешения, т. е. при подаче на него логического 0, происходит соединение одного из информационных входов (в соответствии с кодом на адресных входах) с выходом микросхемы. Поскольку это состояние происходит при помощи двунаправленных ключей на КМОП-транзисторах, то сигнал может передаваться как со входов на выход (режим мультиплексора), так и с выхода нa входы (режим демультиплексора).