Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СХЕМОТЕХНИКА ЭВМ.шпора 3сЁ.doc
Скачиваний:
7
Добавлен:
24.09.2019
Размер:
13.91 Mб
Скачать

31,,,,,,,,,,,,,,Плис типа «система на кристалле» (SoC).

Стало возможным разместить на одном кристалле целую электронную систему, включающую в себя микропроцессорное/микроконтроллерное ядро, массив программируемой логики и блок памяти. Такие системы называют программируемыми или конфигурируемыми устройствами типа система на кристалле (SoC, System-on-Chip).

Проектирование средств на SoС основывается на разработке и применении библиотек схемных решений. Библиотечные блоки могут быть представлены в следующих вариантах.

Soft-ядра или виртуальные компоненты. Это файлы, которые интегрируются в описание проектируемого устройства на языках HDL. На основе soft-ядер реализуются однородные структуры, в которых разные функциональные блоки реализуются идентичными программируемыми схемотехническими блоками.

Hard-ядра, представляющие собой реализованные на кристалле области с фиксированными функциями. На основе hard-ядер реализуются блочные структуры, имеющие жестко выделенные для определенных функций аппаратные ядра. SoС блочного типа включают в себя как программируемые, так и фиксированные области, в которых реализованы блоки с предопределенными функциями. Такими блоками являются микропроцессоры или микроконтроллеры, FPGA, память.

Так, ПЛИС APEX20K фирмы Altera (рис. 27.12) имеет однородную структуру и содержит в себе логические элементы всех перечисленных типов, что позволяет отнести эту ПЛИС к семейству SоC.

В основе идеи SоC лежит интеграция всей электронной системы в одном кристалле (например, в случае ПК такой чип объединяет процессор, память, и т. д.). Компоненты этих систем разрабатываются отдельно и хранятся в виде файлов параметризируемых модулей. Окончательная структура SоC-микросхемы выполняется на базе этих "виртуальных компонентов" с помощью программ систем автоматизации проектирования (САПР) электронных устройств – EDA (Electronic Design Automation). Благодаря стандартизации в одно целое, можно объединять "виртуальные компоненты" от разных разработчиков.

SoC блочного типа используют в качестве процессорных ядер преимущественно 8- и 32-разрядные ядра. В качестве процессора первого типа наиболее часто используют восьмиразрядный микропроцессор 8051 фирмы INTEL, второго – процессор ARM7. В состав микросхемы A7 компании Triscend входят ядро ARM7TDMI с дополнительным четырехпортовым ассоциативным кэшем объемом 8 Кбайт и сверхоперативной SRAM-памятью объемом 16 Кбайт и целый ряд периферийных узлов с жесткой логикой, необходимых для большинства управляющих приложений. Программируемые периферийные узлы, реализованные в виде матрицы конфигурируемой системной логики (CSL), подключаются к адресным и управляющим сигнальным линиям посредством селекторных блоков (рис.27.13).

32,,,,,,,,,,,,,,Цап. Общие положения. Погрешности цап.

Аналого-цифровые преобразователи представляют собой устройства, предназначенные для преобразования электрических величин (напряжения, тока, сопротивления, емкости) в цифровой код. Наиболее часто входной величиной является напряжение.

Цифро-аналоговые преобразователи предназначены для преобразования числа, представленного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные этому числу.

Схема работает в реальном масштабе времени. В ней АЦП непрерывно дискретизирует сигнал с частотой, равной ƒД, и выдает новый отсчет процессору ЦСП с той же частотой. Для обеспечения работы в реальном масштабе времени ЦСП должен закончить все вычисления в пределах интервала дискретизации 1/ƒД и передать выходной отсчет на ЦАП до поступления следующего отсчета с АЦП.

ЦАП требуется только в том случае, когда данные необходимо преобразовать обратно в аналоговый сигнал (например, в случае голосового или звукового приложения).

В процессах аналого-цифрового и цифро-аналогового преобразования используются три независимых операции: дискретизация сигнала по времени – выборка значений исходной аналоговой величины в некоторые наперед заданные моменты времени, квантование – округление до некоторых известных величин полученной в дискретные моменты времени последовательности значений исходной аналоговой величины по уровню и кодирование – замена найденных квантованных значений числовыми кодами. Понимание этих процессов является основополагающим фактором в оценке применения АЦП и ЦАП.

Наиболее важным моментом, характеризующим и ЦАП, и АЦП является тот факт, что их входы или выходы являются цифровыми, поэтому сигнал подвергается квантованию. Обычно N-разрядное слово представляется одним из 2N возможных состояний, поэтому у N-разрядного АЦП (с фиксированным источником опорного напряжения) может быть только 2N значений аналогового выхода, и он может выдавать 2N различных комбинаций, соответствующих значениям аналогового входа.