- •Довідник з нафтогазової справи За загальною редакцією докторів технічних наук
- •Передмова
- •Глава 1
- •1.1. Елементний та ізотопний склад нафти і газу
- •1.2. Характеристика газу
- •1.3. Характеристика нафти
- •1.4. Характеристика порід—колекторів нафти і газу
- •1.5. Природні резервуари нафти і газу
- •1.6. Поклади нафти і газу
- •1.7.Родовища нафти і газу
- •1.8.Термобаричні умови в покладах та родовищах нафти і газу
- •1.9. Походження, міграція та формування покладів і родовищ нафти і газу
- •1.10. Нафтогазоносні регіони України
- •Глава 2 Пошуки та розвідка нафти і газу
- •2.1. Загальні відомості
- •2.2. Геологічні передумови пошуків та розвідки нафти і газу
- •2.5. Підготовка пошукових об'єктів
- •2.6. Виявлення та підготовка до буріння пасток нафти і газу
- •2.7. Методика й оптимізація пошуків та розвідки нафтових і газових родовищ
- •2.8. Методи вивчення розрізів свердловин
- •2.9. Геологічні методи опрацювання результатів буріння свердловин
- •2.10. Підрахунок запасів нафти, газу і конденсату
- •2.11. Підготовка нафтових і газових родовищ до розробки
- •Список літератури
- •Глава 3 Геофізичні методи дослідження свердловин
- •3.1. Електричні та магнітні методи
- •3.2. Метод потенціалів самочинної поляризації гірських порід
- •3.3. Радіоактивні методи
- •3.4. Методи дослідження технічного стану свердловин
- •3.5. Акустичний метод
- •3.6. Термометричний метод
- •3.7. Методи дослідження свердловин у процесі буріння
- •3.8. Прострілювальні та вибухові роботи у свердловинах
- •3.9. Точність методів гдс
- •Глава 4 Проектування конструкцій свердловин та інструмент для їх буріння
- •4.1. Бурові долота
- •4.2. Бурильні колони
- •4.3. Розмежування пластів
- •4.4. Бурові установки
- •4.5. Інструмент для спуску та підйому бурильних і обсадних колон
- •Список літератури
- •Глава 5 Режими буріння
- •5.1. Параметри режимів буріння
- •5.2. Принципи проектування режимів буріння
- •5.3. Бурові розчини
- •Глава 6 Розробка нафтових родовищ
- •6.1. Режими нафтових покладів
- •6.2. Основні критерії виділення об'єктів розробки
- •6.3. Гідродинамічні розрахунки основних технологічних показників розробки
- •6.5. Аналіз розробки нафтових родовищ
- •Глава 7 Розробка газових і газоконденсатних родовищ
- •7.1. Режими родовищ природних газів
- •7.2. Особливості проектування розробки родовищ природних газів
- •7.3. Визначення показників розробки газового родовища при газовому режимі
- •7.4. Визначення показників розробки газового родовища при водонапірному режимі
- •7.5. Визначення показників розробки газоконденсатного родовища
- •7.6. Вибір раціонального варіанта розробки газоконденсатного і газового родовища
- •7.7. Аналіз розробки родовищ природних газів
- •Глава 8 Нафтогазоконденсатовіддача пластів і вуглеводневіддача родовищ природних газів
- •8.1. Призначення, напрямки розвитку і класифікація методів підвищення нафтовіддачі пластів
- •8.2. Фізико-гідродинамічні методи підвищення нафтовіддачі пластів
- •8.3. Фізико-хімічні методи підвищення нафтовіддачі пластів
- •8.4. Газові методи збільшення нафтовіддачі пластів
- •8.5. Теплові методи збільшення нафтовіддачі пластів
- •8.6. Створення потокоскеровуючих бар'єрів закачуванням дисперсних систем для підвищення нафтовіддачі пластів
- •8.7. Зміна термогідродинамічних процесів у багатопластових родовищах для підвищення нафтовіддачі
- •8.8 Визначення нафтовіддачі
- •8.9. Критерії доцільності застосування методів підвищення нафтовіддачі
- •8.10. Ефективність застосування методів підвищення нафтовіддачі пластів
- •8.11. Особливості вилучення нафти з покладів у крутих і підгорнутих крилах складок
- •8.13. Газовіддача газових родовищ при водонапірному режимі
- •8.14 Вуглеводневіддача газоконденсатних родовищ
- •8.15. Вуглеводневіддача газоконденсатних родовищ з нафтовими облямівками і залишковою нафтою
- •9.1. Статика рідин і газів
- •9.2. Рух однорідних рідин
- •9.3. Рух багатофазних сумішей у вертикальних трубах
- •9.4. Розрахунок розподілу тиску потоку газорідинної суміші у свердловині
- •9.5. Витікання рідин і газів через штуцер
- •Список літератури
- •Глава 10 Фонтанна експлуатація нафтових свердловин і їх об ладнання
- •10.1. Обладнання фонтанних свердловин
- •10.2. Умови фонтанування і типи фонтанних свердловин
- •10.3. Мінімальний вибійний тиск фонтанування свердловини
- •10.4. Розрахунок фонтанної експлуатації за методикою Крилова та із використанням кривих розподілу тиску вздовж ліфта
- •Список літератури
- •Глава 1 1 Газліфтна експлуатація нафтових свердловин
- •11.1. Системи, конструкції та обладнання газліфтних свердловин
- •11.2. Розрахунок газліфтної експлуатації при заданому відборі рідини за методикою Крилова
- •11.3. Розрахунок газліфтної експлуатації при необмеженому відборі рідини за методикою Крилова
- •11.4. Пуск газліфтних свердловин. Пускові клапани
- •11.5. Графоаналітичний розрахунок газліфтної експлуатації свердловин
- •11.6. Аналітичний розрахунок параметрів пускових газліфтних клапанів
- •Глава 12 Експлуатація свердловин штанговими насосними установками
- •12.1. Штангова свердловинне—насосна установка
- •12.2. Гідравліко-технологічні розрахунки параметрів при експлуатації свердловин штанговими насосами
- •12.3. Механіко-технологічні розрахунки штангової насосної установки
- •12.4. Проектування експлуатації свердловин штанговими насосними установками
- •Глава 13 Експлуатація свердловин установками занурених відцентрових електронасосів
- •13.1. Установки електровідцентрових насосів
- •13.2. Пдротермодинамічні і технологічні розрахунки параметрів при експлуатації свердловин зануреними відцентровими насосами
- •13.3. Коректування паспортної характеристики евн
- •13.4. Підбір установки зануреного відцентрового насоса
- •Глава 14 Гідродинамічні дослідження нафтових свердловин і пластів
- •14.1. Гідродинамічні методи дослідження свердловин
- •14.2. Дослідження свердловини на усталених режимах фільтрації
- •14.3. Дослідження свердловини на неусталених режимах фільтрації та методи обробки кривих відновлення тиску
- •Глава 15 Поточний (підземний) і капітальний , ремонти свердловин
- •15.1. Склад ремонтних робіт у свердловинах
- •15.2. Глушіння свердловин, вимоги до технологічних рідин
- •15.3. Технологія проведеня поточного ремонту свердловин
- •15.4. Підготовка свердловини до капітального ремонту
- •15.5. Відновлення прохідності стовбура свердловини
- •15.6. Ремонтне—виправні і тампонажні роботи
- •15.7. Ізоляція припливу пластових вод у свердловини
- •15.8. Перехід на інші горизонти
- •15.9. Випробування експлуатаційної колони на герметичність
- •15.10. Застосування електронно-обчислювальної техніки при поточному і капітальному ремонтах свердловин Перед проведенням прс і крс виконують велику кількість інженерно-економічних розрахунків.
- •Глава 16 Виклик та інтенсифікація припливу пластових флюїдів до вибою свердловини
- •16.1. Вибір свердловини для обробки привибійної зони
- •16.2. Кислотна обробка
- •16.3. Гідравлічний розрив пласта
- •16.4. Застосування струменевих апаратів у освоєнні свердловин
- •16.5. Технологія комплексного освоєння і дослідження свердловин із застосуванням пгдп-1
- •16.6. Використання в'язких систем для інтенсифікації припливу нафти й газу
- •16.7. Хімічні реагенти і технології для очистки нафтопромислового обладнання свердловин і порового простору пластів від аспв
- •Глава 17 Газові свердловини
- •17.1. Конструкція та обладнання газових свердловин
- •17.2. Обладнання свердловин при одночасній роздільній експлуатації газових пластів
- •Список літератури
- •Глава 18 Особливості фільтрації газу в пласті та руху в свердловині
- •18.1. Приплив газу до вибою свердловин за законом Дарсі
- •18.2. Приплив газу до вибою свердловини за двочленним законом фільтрації
- •18.3. Температурний режим фільтрації газу в пласті
- •18.4. Визначення тиску в газовій свердловині
- •18.5. Температурний режим газових свердловин
- •Список літератури
- •Глава 19 Газогідродинамічні дослідження газових і газоконденсатних свердловин
- •19.1. Мета, задачі та методи дослідження свердловин
- •19.2. Дослідження газових свердловин при стаціонарних режимах фільтрації
- •19.3. Особливості дослідження свердловин, пробурених на пласти з низькою продуктивною характеристикою
- •19.5. Дослідження родовищ на газоконденсатність
- •Глава 20 Ускладнення при експлуатації газових свердловин
- •20.1. Експлуатація газових свердловин в пластах з підошовною водою
- •20.2. Експлуатація газових свердловин в умовах обводнения
- •20.3. Особливості експлуатації газоконденсатних свердловин в умовах ретроградної конденсації вуглеводневої суміш}
- •20.4. Гідроутворення при експлуатації газових свердловин
- •20.5. Корозія газрпромислового обладнання. Захист свердловинного і наземного обладнання від корозії
- •20.6. Солевідкладення при експлуатації газових свердловин, методи боротьби з ними
- •Глава 21 Збір і підготовка нафти та газу на нафтових промислах
- •21.1. Сучасні уніфіковані технологічні системи збору продукції нафтових свердловин
- •21.2. Замір та облік видобутку нафти і нафтового газу
- •Глава 22 Промислові трубопроводи
- •22.1. Гідравлічний розрахунок промислових трубопроводів
- •22.2. Розрахунок промислових трубопроводів на міцність і стійкість
- •22.3. Вимоги до промислових трубопроводів
- •Глава 23 Промислова підготовка нафти, газу та нафтопромислових стічних вод
- •23.1. Відокремлення газу від нафти
- •23.2. Промислова підготовка нафти
- •23.3. Підготовка нафтопромислових стічних вод
- •Глава 24 Транспорт газу
- •24.1. Лінійна частина газопроводу
- •24.2. Компресорні станції
- •Глава 25 Підземне зберігання газу в пористих пластах
- •25.1. Основні елементи, які характеризують підземні сховища, та вимоги до них
- •25.2. Режим роботи газових покладів при експлуатації псг
- •Список літератури
- •Глава 26 Збір і підготовка природного газу на промислах
- •26.1. Промисловий збір газу і конденсату
- •26.2. Температурний режим роботи трубопроводів
- •26.3. Промислова обробка газу і конденсату
- •Список літератури
- •Глава 27 Економіка нафтової і газової промисловості
- •27.1. Ефективність виробництва на підприємствах нафтової і газової промисловості
- •27.2. Оцінка ефективності впровадження систем інформаційного забезпечення управління (ізу) виробничими процесами спорудження свердловин
- •Список літератури
- •Глава 1. Фізико - хімічна характеристика та геологічні умови
- •Глава 2. Пошуки та розвідка нафти і газу..........................................................З0
- •Глава 3. Геофізичні методи дослідження свердлоиин......................................62
- •Глава 4. Проектування конструкцій свердловин та інструмент для їх бурін.....84
- •Глава 5. Режими буріння......................................................................................160
- •Глава 6, Розробка нафтових родовищ..................................................................173
- •Глава7. Розробка газових і газоконденсатних родовищ (р.М.Кондрат).......................218
- •Глава 8. Нафтогазоконденсатовіддача пластів
- •Глава9. Теоретичні основи експлуатації нафтових свердловин (b.C. Бойко)..................307
- •Глава 11. Газліфтна експлуатація нафтових свердловин (b.C. Бойко).......................336
- •Глава 13. Експлуатація свердловин установками занурених відцентрових
- •Глава 14. Гідродинамічні дослідження нафтових свердловин і пластів
- •Глава 15. Поточний (підземний) і капітальний ремонти свердловин...............................416
- •Глава 17. Газові свердловини (р.М.Кондрат)...................................................................456
- •Глава 19. Газогідродинамічні дослідження газових і газоконденсатних свердловин
- •Глава20. Ускладнення при експлуатації газових свердловин (p.M. Кондрат).........487
- •Глава 27. Економіка нафтової і газової промисловості (о.І. Лесюк, м.О. Данилкж,
16.4. Застосування струменевих апаратів у освоєнні свердловин
Одними з найбільш трудомістких операцій в освоєнні свердловин є виклик припливу з пласта, оцінка фільтраційних властивостей порід у приствольній та віддаленій зонах свердловин, очистка приствольних зон пласта з метою відновлення та поліпшення їх фільтраційних властивостей. В Івано-Франківському державному технічному університеті нафти і газу розроблено комплекс вибійного обладнання, в основу роботи якого покладено принцип дії ежектора. На основі цього принципу розроблені струминні апарати стаціонарного або вставного типу (ПОС та ПЕОС і ПГДП).
За
допомогою цього обладнання частково
або повністю можна виконувати такі
операції: миттєве зняття тиску над
пластом, забезпечення припливу у вибій
свердловини пластового флюїду, миттєве
відновлення тиску над пластом до
гідростатичного, багаторазове повторення
цих операцій, фіксація в зоні пласта
процесу відновлення тиску (КВТ
- кривих
відновлення тиску) та одержання даних
для
побудови індикаторних кривих і
встановлення режиму експлуатації
свердловин. Тут
-
депресія
на пласт,
_
— приплив
рідини з пласта за фіксований час. Під
терміном "миттєве" зняття тиску і
його відновлення мається на увазі час
від 10
до
120
с залежно
від глибини та ряду інших факторів.
Отримання КВТ до і після операцій очистки привибійної зони дає змогу оцінювати зміну фільтраційних властивостей породи і при необхідності планувати ті чи інші методи штучної дії на породу. Створення ступінчастих депресій з фіксацією їх величин та кількості приплилої рідини з пласта дає змогу побудувати індикаторну криву. Миттєве зняття тиску над пластом і його відновлення приводить до виникнення високих швидкостей фільтрації з
444
боку пласта до свердловини і навпаки. При цьому в момент зменшення тиску відсутні сили, які притискають дисперсні частини до скелету пласта. Зміна напрямку фільтрації дозволяє уникнути закупорювання пор або звивистих тріщин. Внаслідок цього активізується процес руйнування зони кольматації та її винос у свердловину.
А.Х.Мірзаджанзаде та його учні довели також, що в момент миттєвого зменшення тиску на пласт у пластовій рідині виникають від'ємні тиски, які істотно змінюють їх властивості, внаслідок чого ще більше інтенсифікується процес очистки привибійної зони. Що стосується напруженого стану порід, то багаторазова зміна тиску в зоні пласта дає змогу змінювати загальний напружений стан породи і може призвести до появи , за рахунок втоми, системи тріщин.
Відомо, що в зоні продуктивної товщі пласта є прошарки з різною проникністю, які в процесі буріння забруднюються по-різному. Для одних прошарків достатньо створити 4-6 циклів депресій-репресій~ щоб очистити привибійну зону, іншим же прошаркам для цього треба 40-50 циклів. В цілому при очистці всієї товщини потрібно орієнтуватись на очистку найбільш закупорених прошарків. Струменеві апарати спускають в свердловину на розрахункову глибину на насосно-компресорних трубах (НКТ) разом з пакером, обпресовуючим сідлом, циркуляційним клапаном та фільтром-хвостовиком. Пакер встановлюють над пластом, який треба випробувати. Циркуляційний клапан розміщують вище місця встановлення струминного апарата на одну трубу колони НКТ, а обпресовуюче сідло - над циркуляційним клапаном.
За допомогою насосних агрегатів ЩА=320, ЦА=400, 4АН=700 та інших) робоча рідина (вода або дегазована нафта) подається по НКТ до струминного апарата. Витікаючи з великою швидкістю (200-280 м/с) із насадки ежектора, струмінь робочої рідини частково розширюється, тому там створюється зона зниженого тиску, куди в камеру інжекції втягується рідина з підпаркерної зони. В камері змішування струминного апарата відбувається енергообмін між струменями робочої та інжектованої рідин, тут же вирівнюються профілі швидкостей по перерізу камери змішування. Змішаний струмінь потрапляє в дифузор, де кінетична енергія перетворюється в потенціальну енергію статичного тиску. Рідина, яка виходить із дифузора струминного апарата, рухається до гирла свердловини по затрубному простору.
Таким чином, в підпаркерній зоні створюється тиск, менший від гідростатичного. Величина зниження тиску залежить від витрати рідини при закачуванні та від поточного дебіту пластових флюїдів, що надходять з пласта. При припиненні закачування рідини тиск стовпа рідини з міжтрубного простору через дифузор та камеру змішування апарата передається на пласт.
Тиск
на гирлі свердловини при роботі
струминного апарата
потрібний
для досягнення заданого зниження
тиску в камері інжекції
визначають
за формулою
де
-
тиск
стовпа змішаної рідини в затрубному
просторі;
-
втрати
тиску під час руху змішаної рідини в
затрубному просторі над апаратом;
-
тиск
стовпа робочої рідини на глибині
встановленого апарата;
—
втрата
тиску під час руху робочої рідини від
агрегата
до апарата;
-
відносний
перепад тиску, причому
і
.
де
і
—
статичні тиски струменів відповідно
робочої та інжектованої рідини у вхідному
перерізі та змішаної рідини у вихідному
перерізі камери змішування.
445
Для
застосування високонапірних струминних
апаратів коефіцієнти ежекції невеликі
и=0,1..
.0,4 і
відповідають, наприклад, таким значенням
при
діаметрі робочого насадка 5,6
мм,
а при діаметрі камери змішування 9
мм:и
=
0,1 -
=
0,46 і
далі 0,2—0,43;
0,3
—0,39; 0,4 — 0,35.
Технологічний процес складається з підготовки свердловини, надземного та підземного обладнань, вибору режиму роботи струминного апарата, визначення порядку проведення робіт циклічної дії на пласт, проведення завершальних робіт. Технологічний процес може бути реалізованим на свердловинах з такими характеристиками: значення пористості та проникності продуктивних відкладів не нижче граничних для даного родовища; продуктивний пласт складається зі стійких порід, які не мають здатності до руйнування при багаторазовому створенні депресій-репресій з їх граничними значеннями; величину граничної депресії слід контролювати по відстані до водяного пласта, по можливості не допускати виділення газу з нафти безпосередньо в привибійній зоні; внутрішній діаметр обсадної колони не менше 118 мм; викривлення стовбура свердловини не більше 1° на 10 м.
Кількість циклів, які необхідно створити для відновлення або поліпшення фільтраційних властивостей, коливається від 2-3 до 30-40 залежно від забруднення при-вибійної зони пласта.
Розроблені з метою освоєння свердловин струминні апарати належать до високо-напірних, в яких відношення площ поперечних перерізів камери змішування і робочого насадка звичайно витримуються в межах 2,4...2,7. Коефіцієнт інжекції може змінюватися від 0 до 1. В практику освоєння свердловин ввійшло багато конструкцій струменевих апаратів, їх продовжують вдосконалювати, але найбільш вживаними є конструкції стаціонарного струминного апарата ПОС та вставних ПЕОС і ПГДС. При цьому вставні ПЕОС випускаються з нижнім зворотним клапаном або без нього Калуським об'єднанням "Карпатнафто-маш". На рис. 16.5,а показано конструкцію струминного апарата ПОС, який складається з корпуса 1 з поздовжнім прохідним каналом і встановленим в ньому твердосплавним насадком 4, який вставляється в запресоване гніздо 3 і зворотній клапан 2, а також камери змішування 5 з технологічною заглушкою 6. Зовнішній діаметр пристрою 96мм, довжина 460мм, маса 11кг. На рис. 16.5,6 показано конструкцію вставного струминного апарату ПЕОС, який складається із корпуса 5 та вставного струминного насоса б. В нижній частині струминного насоса розміщено зворотний клапан, який з'єднується з струменевим насосом через перехідних 7. Клапанний вузол включає сідло 2 та кулю 9, обмежувач переміщення 4, захисний кожух 8, скеровуючу втулку 3, наконечник 1 з манжетами 11. Ущільнення сідла 2 забезпечується кільцями 10. Внизу струминного апарата і оберненого клапана є різьба для приєднання глибинного манометра. Для заміру кривих відновлення тиску струминний апарат з'єднується зі зворотним клапаном, внизу якого розміщується глибинний манометр. При подачі робочої рідини до насадка струминного апарата в камері інжекції Створюється область зниженого тиску, куля 9 струменем рідини з вибою піднімається і таким чином здійснюється відпомпування рідини і подача її через камеру змішування і дифузор в міжтрубний простір. При припиненні циркуляції рідина із затрубного простору повертає кулю в гніздо, чим ізолюються підпаркерна і надпаркерна зони, а глибинний манометр фіксує значення відновлюваного тиску.
Для створення миттєвих депресій-репресій на пласт вузол зворотного клапана від'єднують від струминного апарата, попередньо піднявши весь апарат на поверхню канатною технікою або зворотною циркуляцією. Глибинний манометр для фіксації величин депресій-репресій і їх кількості з'єднується безпосередньо зі струменевим насосом. Після цього вставний струминний апарат потоком робочої рідини транспортується через НКТ до посадки в корпус.
Пристрій для гідродинамічних досліджень пласта ПГДП показано на рис. 16.6. Цей пристрій, як і ПЕОС, може записувати криві відновлення тиску, створювати і фіксувати депресію на пласт. Пристрій спускається у свердловину на кабелі. В самому пристрої змонто-
446
ваний тензометричний датчик тиску, сигнали якого передаються по кабелю на осцилограф каротажної станції.
Технологія дії на пласт шляхом створення миттєвих багаторазових депресій та репресій складається з таких основних етапів: підготовка свердловини, підземного та надземного обладнання, вибір режиму роботи струминного апарата, визначення порядку проведення робіт за циклічною дією на пласт, проведення завершальних робіт. При цьому слід чітко дотримуватися основних вимог техніки безпеки. У свердловину спускають НКТ з пакером механічної дії (для ПОС) або гідромеханічної дії (для ПЕОС та ПГДП) та встановленим над пакером струминним апаратом. Встановлений під пристроєм пакер виключає при роботі струминного апарату передачу на пласт, який досліджується чи освоюється, гідростатичного тиску рідини, що заповнює свердловину. Для включення в роботу струминного апарата насосними агрегатами з поверхні через НКТ закачується під заданим тиском робоча рідина. Якщо припинити подачу робочої рідини до струминного апарата, то рідина із міжтрубного простору через дифузор та камеру змішування потрапляє в підпаркерну зону, внаслідок чого відновлюється гідростатичний тиск на пласт.
За період 1985-1990рр. струминні апарати застосовувались на 3000 свердловин в об'єднаннях Західного Сибіру. Успішність операцій в середньому становить 70%. При цьому дебіти свердловин зростають від 1,5 до 10 та більше разів. Ефективна товща працюючих пластів збільшується на 40-50%. Одержані результати свідчать про те, що застосування струменевих апаратів є перспективним з точки зору підвищення продуктивності нафтових або приймальності нагнітальних свердловин.
Рис.16.6. Схема розташування в свердловині пристрою для гідродинамічних досліджень: 1-НКТ;2-каротажнии кабель; 3-корпус;4-ПГДП; 5-пакер; 6-обернений клапан з датчиком тиску; 7-глибинний манометр; 8-сІдло оберненого клапана; 9-пробовідбірник |
Рис. 16.5. Конструкції струминного апарата ПОС (а) І ПЕОС (б)
447
