Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Молекуляр.кинет. теория. Теплота ВК.docx
Скачиваний:
19
Добавлен:
08.09.2019
Размер:
569.61 Кб
Скачать

4.5. Первое начало термодинамики.Понятие теплоемкости

1. Первый закон термодинамики, установленный на основании многочисленных опытов, утверждает, что изменение внутренней энергии ΔU системы равно сумме совершаемой над системой работы A' внешних сил и количества теплоты Q, переданного системе извне.

.

(4.18)

Этот закон можно сформулировать несколько иначе, если вместо работы A' внешних сил говорить о работе A самой системы. Поскольку A' = – A, то

, или ,

(4.19)

таким образом, полученное системой количество теплоты равно сумме изменения ее внутренней энергии и работы, совершаемой системой над внешними телами.

Соотношения (4.18) и (4.19) представляют собой математическое выражение первого закона термодинамики, который является конкретной формулировкой закона сохранения энергии применительно к тепловым процессам.

По сути дела, формулировка 1-го начала термодинамики послужила основанием для утверждения в физике понятия "энергия". С той поры оно заняло центральное место в физике, отодвинув на второй план введенное Ньютоном понятие "сила". Признание энергии как наиболее общего понятия, позволяющего рассматривать с единой точки зрения все явления и процессы, следует признать основным достижением науки XIX в.

Весь производственный и научный опыт, многочисленные экспериментальные подтверждения предсказаний, сделанные на основе первого начала, свидетельствуют о справедливости этого базового закона природы.

2. Рассмотрим систему, которая получает энергию в процессе теплообмена. Пусть для изменения температуры системы на ΔT потребовалось количество теплоты Q. Теплоемкостью системы называется величина

.

(4.20)

Если в качестве системы рассматривать 1 моль вещества, то теплоемкость, определяемая соотношением (4.20), называется молярной теплоемкостью. Удельная теплоемкость (теплоемкость единицы массы вещества) связана с молярной теплоемкостью очевидным равенством:

.

(4.21)

В уравнении (4.19) величина A, как было показано выше, является функцией процесса, тогда и величина Q, очевидно, зависит от условий процесса и является его функцией. Поскольку Q есть функция процесса, то и теплоемкость, естественно, есть функция процесса и для ее определения необходимо указать условия процесса. Обычно различают теплоемкость при постоянном объеме СV (изохорный процесс) и теплоемкость при постоянном давлении СР (изобарный процесс). Воспользуемся уравнением (4.19) для определения величин СР и СV и установления соотношения между ними.

При изохорном процессе и, как следует из (4.16), работа равна нулю. При этом условии, используя (4.19) и (4.20), находим

.

(4.22)

Для изобарного процесса, используя равенства (4.16), (4.19) и (4.22), получаем

.

(4.23)

Уравнение (4.23) показывает, что теплоемкость СР больше СV на величину работы, совершаемой системой при ее изобарном нагревании на 1ºС.

Для моля идеального газа уравнение состояния имеет вид:

PV = RT.

Применение этого уравнения к двум состояниям моля газа в изобарном процессе приводит к соотношению

РΔV = RΔT.

(4.24)

Подставляя (4.24) в (4.23), получаем

CP = CV + R.

(4.25)

Полученное уравнение называется уравнением Роберта Майера. Из сравнения уравнений (4.23) и (4.25) легко вскрыть физический смысл универсальной газовой постоянной. Эта величина, очевидно, равна работе изобарического расширения моля идеального газа при его нагревании на один Кельвин.