Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Распечатать.docx
Скачиваний:
15
Добавлен:
27.08.2019
Размер:
1.14 Mб
Скачать

24. Правила дифференцирования

Операция отыскания производной от данной функции называется дифференцированием этой функции. Установим ряд правил, которые избавят нас от необходимости вычис­лять производную исходя непосредственно из ее определения .Производная от аргумента х, Полагая y=x, находим Δy =Δx. Поэтому .А так как предел постоянной равен ей самой, тo y’=1. Итак, (x)’=1Производная постоянной .Докажем, что производная постоянной равна нулю. В самом деле, если y=c, то Δy=0; поэтому при всяком Δx≠0 имеем . Но тогда (так как предел постоянной равен ей самой) Итак,(c)’=0 Производная суммы Докажем, что производная суммы дифферен­цируемых функций равна сумме их производных. Убедимся в этом для сум­мы двух функций (для большего числа слагаемых доказательство аналогич­ное).Пусть y=u+v; но тогда Δy =Δu + Δv. Деля на Δx, имеем . Отсюда, переходя к пределу при, Δx→0 находим (так как предел сум­мы равен сумме пределов): или y’=u’+v’ Производная произведения Найдем производную произведения двух дифференцируемых функций. y=u·v. Когда аргумент x получает прираще­ние , то функции и, v и у получат соответственно приращения , Δv и Δy, причем y+Δy =(u+Δu)·(v+ Δv). Отсюда находим Δy: Δy =(u+Δu)·(v+ Δv)-u·v=v· Δu+ u· Δv+ Δu·Δv.

25. Дифференциал функции

Таким образом, установлены следующие предложения, характеризую­щие свойства дифференциала и связь его с приращением функции.. Дифференциал функции равен произведению ее производной на дифференциал аргумента (независимого переменного). Разность между приращением функции и Δy ее дифференциалом dy есть величина бесконечно малая более высокого порядка, чем приращение аргумента Δx, а также (при y’≠0) более высокого порядка, чем приращение функции Δy и ее дифференциал dy (в самом деле, при y’≠0 и Δx→0, Δy есть бесконечно малая того же порядка малости, что и Δx , так как dy также будет бесконечно малой того же порядка, поскольку dy=y’ ·Δy). В силу этого последнего свойства при y’≠0 приращение функции Δy и ее дифференциал dy будут при бесконечно малом равносильными бесконечно малыми:

Дифференциал функции имеет простой геометрический смысл: значение дифференциала функции, при данном значении аргумента x и данном при­ращении, Δx равно прираще­нию ординаты касательной,, проведенной в точке с абсцис­сой x графика этой функции, при переходе от точки каса­ния (с абсциссой x) к соседней точке касательной с абсциссой x+ Δx.В самом деле, соответст­вующее приращение ординаты касательной на рис. 4.5 изо­бражается катетом KN треу­гольника MKN, в котором вторым катетом служит от­резок МК= , а острый угол при вершине М равен , причем Но тогда KN = МК что и требовалось доказать.

26. Производные высших порядков

Если задана произвольная дифференцируемая функция , то ее производная , как известно, в свою очередь является функцией того же аргументa x. Поэтому можно ставить вопрос об отыскании производной от этой функции.

Определение производной второго порядка

Производную от производной данной функции, если она существует, называют производной второго порядка, или второй производной, от данной функции и обозначают символом . Таким образом

В связи с этим производную в дальнейшем будем называть производной первого порядка, или первой производной

Определение производной n–го порядка. Примеры

В общем случае производной порядка n+1 от данной функции называется производной от производной порядка этой функции:

.Очевидно, что в силу принятого нами определения производных высших порядков (если они существуют у данной функции), будет справедливо такое утверждение:

Производная порядка от n-й производных высших порядков (если они существуют у данной функции), будет равна производной порядка от этой функции ( -­ целые положительные числа): .Рассмотрим несколько примеров отыскания производных высших порядков.

1. Найти производную порядка от функции .

Находим, выполняя последовательные дифференцирования:

.

2. Найти производную порядка от функций y=sin x и y=cos x.

Первую производную от, sin x равную cos x, можно записать в следующем виде: отсюда следует, что операция дифференцирования функции y=sin x по x формально сводится к прибавлению к аргументу синуса.

В силу этого ; поэтому .

Дифференциалы высших порядков

Дифференциалом второго порядка (его обозначают символом ) от функции называют дифференциал ее дифференциала: Найдем его выражение. Имеем , причем — произвольное приращение аргумента , которое от аргумента не зависит. В виду этого при отыскании второго дифференциала функции надо рассматривать диф­ференциал независимого переменного как величину постоянную относи­тельно аргумента .

Находим

Таким образом, второй дифференциал функции равен произведению ее второй производной на квадрат дифференциала независимого переменного:d2y=y”·dx2