
- •Билет№1. Вопрос 1.Этапы развития технических средств автоматизации
- •Вопрос 2.Основные предпосылки к применению роботов. Прямая и обратная задачи о положении манипулятора промышленного робота.
- •Вопрос 3. Основные понятия теории автоматического управления (тау)
- •Вопрос 4. Понятие исполнительного устройства( механизма)
- •5. Понятие об управлении производственным процессом. Общая структурная схема автоматизированного управления
- •Оператор
- •Билет№2 Вопрос 1. Методы стандартизации и структура технических средств автоматизации.
- •Вопрос 2.Поколения промышленных роботов.
- •Вопрос 3. Фундаментальные принципы управления. Расчет элементарных динамических звеньев.
- •Вопрос 4. Бинарные и цифровые датчики
- •Вопрос 5. Роль информационно-вычислительного комплекса в управлении производственными процессами
- •Билет№3 Вопрос 1. Унификация средств автоматизации
- •Вопрос 2. Состав и режимы работы роботов
- •Вопрос 3. Основные виды систем автоматического управления (сау)
- •Вопрос 4. Динамические характеристики датчиков
- •Вопрос 5. Основные требования, предъявляемые автоматизацией к технологии и аппаратному оформлению пищевого предприятия
- •Билет№4 Вопрос 1. Опишите структуру комплекса асутп
- •Вопрос 2. Классификация промышленных роботов.
- •Вопрос 3. Статические характеристики систем автоматического управления. Прямая и обратная задачи преобразований Лапласа
- •Преобразование Лапласа
- •Вопрос 4. Аналоговые датчики
- •Вопрос 5. Операторная форма записи дифференциальных уравнений, определение оригиналов по изображениям
- •Билет№5 Вопрос 1. Распределенные системы управления.
- •Вопрос 2. Параметры, определяющие технический уровень роботов.
- •Вопрос 3. Статическое и астатическое регулирование
- •Вопрос 4. Понятие исполнительного устройства (механизма)
- •Вопрос 5. Классификация систем управления по уровню и ступеням управления
- •Билет№6 Вопрос 1. Программное обеспечение асутп
- •Вопрос 2. Системы координат промышленных роботов (пр). Задача определения степеней подвижности пр.
- •Вопрос 3. Динамические режимы функционирования сау.
- •Вопрос 4. Полоса пропускания и шум при передачи сигналов в асутп
- •1.4. Передача измерительных сигналов
- •Вопрос 5. Характеристика одноконтурных и многоконтурных систем управления.
- •Билет №7. Вопрос 1. Исполнительные механизмы. Их виды.
- •Вопрос 2. Число степеней подвижности промышленных роботов.
- •Вопрос 3. Линеаризация уравнений динамики сау. Задача выбора оптимального способа линеаризации.
- •Вопрос № 4. Погрешность и точность датчиков.
- •Вопрос № 5. Основные виды связей между элементами систем автоматического управления.
- •Билет№8 Вопрос 1. Виды электродвигательных исполнительных механизмов. Рассчитать передаточную функцию исполнительного механизма, изменяющего расход жидкости при наполнении емкости.
- •Вопрос 2. Сравнительная характеристика приводов пр.
- •Вопрос 3. Понятие о передаточных функциях.
- •Вопрос 4. Динамические характеристики датчиков
- •Вопрос 5. Классификация систем управления по информационным функциям.
- •Билет№9 Вопрос 1. Расчет электромагнитных исполнительных механизмов.
- •Вопрос 2. Элементы пневмопривода промышленных роботов.
- •Вопрос 3. Элементарные динамические звенья.
- •Вопрос 4. Статические характеристики датчиков. Рассчитать статическую характеристику датчика температуры
- •Вопрос 5. Классификация систем управления по характеру изменения задающего устройства.
- •Билет№10. Вопрос 1. Электромеханические муфты. Классификация.
- •Вопрос 2. Типовая схема и элементы управления пневмопривода промышленных роботов.
- •Вопрос 3. Понятие о временных характеристиках сау. Рассчитать переходную характеристику электромеханической муфты.
- •Вопрос 4. Бинарные и цифровые датчики.
- •Вопрос 5. Виды частотных характеристик и способы их определения.
- •Билет№11 Вопрос 1. Релейные исполнительные механизмы
- •Вопрос 2. Демпфирование пневмопривода промышленных роботов.
- •Вопрос 3. Частотные характеристики сау
- •Вопрос 4. Цифровые и информационно-цифровые датчики
- •Вопрос 5. Понятие элементарного звена и типовые звенья систем автоматического управления
- •Билет№12 Вопрос 1. Электромагнитные релейные исполнительные механизмы.
- •Вопрос 2. Пневматический следящий привод
- •Вопрос 3. Частотные характеристики типовых звеньев.
- •2.1. Пропорциональное звено (усилительное, безынерционное)
- •2.2. Апериодическое звено
- •2.3. Апериодическое звено 2-го порядка (колебательное)
- •Вопрос 4. Аналоговые датчики
- •Вопрос 5. Способы соединения звеньев
- •Билет№13 Вопрос 1. Унификация средств автоматизации.
- •Вопрос 2. Гидравлический привод пр
- •Вопрос 3. Законы регулирования. Законы регулирования: п, пи, пид
- •Вопрос 4. Согласование и передача сигналов в асу тп
- •Вопрос 5. Характеристика комбинированных аср
- •Билет№14 Вопрос 1.Этапы развития средств автоматизации
- •Вопрос 2.Электрический привод промышленных роботов
- •Вопрос 3. Понятие устойчивости сау (Устойчивость сау)
- •5.1. Устойчивость объектов управления
- •Вопрос 4. Выбор носителя сигнала в информационно-измерительных каналах асу тп
- •Вопрос 5. Характеристика адаптивных систем управления.
- •Билет№15 Вопрос 1. Опишите структуру комплекса асутп
- •Вопрос 2. Комбинированный привод промышленных роботов
- •Вопрос 3. Критерий устойчивости Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •Вопрос 4. Бинарные (двухпозиционные) исполнительные механизмы
- •Вопрос 5. Использование микропроцессорной техники в системах автоматического управления.
- •Билет№16 Вопрос 1. Распределенные системы управления
- •Вопрос 2. Задачи и история робототехники, основные предпосылки к применению
- •Вопрос 3. Критерий устойчивости Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Вопрос 4. Использование микропроцессорной техники в системах автоматического управления.
- •Вопрос 5. Исполнительные механизмы с электроприводом.
- •Билет №17. Вопрос 1. Программное обеспечение асутп.
- •Вопрос 2. Поколения промышленных роботов.
- •Вопрос 3. Критерий устойчивости Рауса-Гурвица.
- •5.5.1.1. Критерий Гурвица
- •5.5.1.2. Критерий Рауса
- •Вопрос 4. Ввод аналоговых сигналов в компьютер.
- •Вопрос 5. Запас устойчивости линейных стационарных систем автоматического управления.
- •Билет№18 Вопрос 1. Исполнительные механизмы. Их виды.
- •Вопрос 2. Классификация промышленных роботов.
- •Вопрос 3. Статические и астатические системы регулирования
- •Вопрос 4. Цифро-аналоговое преобразование сигналов
- •Вопрос 5. Использование эвм в замкнутых и разомкнутых контурах управления
- •Билет№19 Вопрос 1. Электромеханические муфты. Классификация.
- •Вопрос 2. Система координат промышленных роботов.
- •Вопрос 3. Понятие о частотных характеристиках сау.
- •Вопрос 4. Аналого-цифровые преобразователи
- •Вопрос 5. Требования к эвм, используемым в асу тп.
- •Билет№20 Вопрос 1. Электромагнитные релейные исполнительные механизмы.
- •Вопрос 2. Число степеней подвижности промышленных роботов.
- •Вопрос 3. Элементарные динамически звенья
- •Вопрос 4. Понятие датчика
- •Вопрос 5. Назовите самые важные характеристики цап, которые нужно учитывать при его выборе или разработке.
Вопрос 2. Демпфирование пневмопривода промышленных роботов.
Ввиду высоких скоростей движения поршня пневмодвигателя необходимо осуществлять его торможение в конце прямого и обратного хода. Это повышает точность позиционирования и снижает динамические нагрузки в ПР.
В пневмоприводах ПР используются два типа торможения: с помощью демпфирующих устройств или путем дросселирования (рис.10).
При использовании демпфирующих устройств (внешними устройствами) торможение происходит на небольшом участке в конце хода при подходе к точке позиционирования. При использовании дросселей (торможение рабочим телом) разгон и торможение осуществляется на большей части хода, чем достигается требуемый закон изменения кинематических параметров в течение всего цикла движения.
Торможение демпфером основано на гашении энергии движения. Наиболее широкое применение получили гидравлические демпферы (рис. 11) и меньшее – механические.
Работа гидродемпфера происходит следующим образом. В момент торможения упор 1, взаимодействующий со штоком пневмодвигателя, утопляет подвижную часть демпфера – поршень 2 гидроцилиндра 3. За счет вытеснения масла через коническую щель 4 в полость 5 и происходит торможение поршня 2. Плавность торможения обеспечивается за счет выбора параметров демпфера: размеров конической щели 4, параметров дросселя 8 и пружины 7 аккумулятора 6. Размеры dд, b и l рассчитывают по известной скорости поршня и допускаемому тормозному ходу.
Рис. 11 – Схема гидродемпфера.
Сила демпфирования РД может быть определена по формуле:
(7)
где Δрз – перепад давления в кольцевом зазоре z;
dп – диаметр поршня демпфера.
Перепад давления Δрз определяется по формуле:
(8)
где μ – динамическая вязкость жидкости;
b – длина демпфирующего зазора;
vЗ – скорость жидкости в зазоре.
Из условия неразрывности потока жидкости имеем:
(9)
где v – скорость поршня исполнительного двигателя;
fЗ – площадь зазора.
Тогда окончательно получаем:
(10)
В механических демпферах энергия движущихся элементов привода и груза преобразуется в энергию сжатой пружины. Конструктивное оформление механического демпфера производится в виде цилиндрической пружины, заключенной в корпус. Пружинные демпферы применяются для приводов с грузоподъемностью до 1 кг., поскольку параметры пружины зависят от массы перемещаемых объектов манипулирования, а также от скорости.
Основным параметром пружины является сила пружины Рпр=ПД.
Вопрос 3. Частотные характеристики сау
Частотной характеристикой линейной системы или, что эквивалентно, комплексной частотной функцией линейной системы называется функция W(i), получаемая из передаточной функции системы при подстановке p=i. {КЧХ объекта широко используются при анализе систем управления на устойчивость, а также при расчетах параметров настройки регуляторов.}
Расширенные частотные характеристики:
расширенная по m частотная характеристика
Расширенной по m частотной характеристикой линейной системы называется функция W(-m+i), где m≥0, получаемая из передаточной функции системы при подстановке p=-m+i.
m - величина относительного демпфирования.
Характеристики W(-m+i) используются при определении запаса устойчивости и колебательности систем управления, т.к. позволяют определить самую высокую частоту колебаний, совершаемых системой при свободном движении, т.е. в отсутствие управляющих и возмущающих воздействий.
расширенная по η частотная характеристика
Расширенной по η частотной характеристикой линейной системы называется функция W(-η +i), где η ≥0, получаемая из передаточной функции системы при подстановке p=-η +i.
η - величина абсолютного демпфирования.
Характеристики W(-η +i) используются при определении запаса устойчивости и быстроты затухания колебаний, совершаемых системой при свободном движении.
- комплексная частотная характеристика (КЧХ);
- вещественная частотная характеристика (ВЧХ);
- мнимая частотная характеристика (МЧХ);
- амплитудная частотная характеристика (АЧХ);
- фазовая частотная характеристика (ФЧХ);
- логарифмическая амплитудная частотная характеристика (ЛАЧХ);
- логарифмическая фазовая частотная характеристика (ЛФЧХ);
Рассматривая как вектор и варьируя частоту входного сигнала от 0 до , получим на комплексной плоскости кривую, описываемую концом этого вектора. Эта кривая называется годографом вектора комплексной частотной функции или амплитудно–фазовой частотной характеристикой (АФЧХ).