
- •Билет№1. Вопрос 1.Этапы развития технических средств автоматизации
- •Вопрос 2.Основные предпосылки к применению роботов. Прямая и обратная задачи о положении манипулятора промышленного робота.
- •Вопрос 3. Основные понятия теории автоматического управления (тау)
- •Вопрос 4. Понятие исполнительного устройства( механизма)
- •5. Понятие об управлении производственным процессом. Общая структурная схема автоматизированного управления
- •Оператор
- •Билет№2 Вопрос 1. Методы стандартизации и структура технических средств автоматизации.
- •Вопрос 2.Поколения промышленных роботов.
- •Вопрос 3. Фундаментальные принципы управления. Расчет элементарных динамических звеньев.
- •Вопрос 4. Бинарные и цифровые датчики
- •Вопрос 5. Роль информационно-вычислительного комплекса в управлении производственными процессами
- •Билет№3 Вопрос 1. Унификация средств автоматизации
- •Вопрос 2. Состав и режимы работы роботов
- •Вопрос 3. Основные виды систем автоматического управления (сау)
- •Вопрос 4. Динамические характеристики датчиков
- •Вопрос 5. Основные требования, предъявляемые автоматизацией к технологии и аппаратному оформлению пищевого предприятия
- •Билет№4 Вопрос 1. Опишите структуру комплекса асутп
- •Вопрос 2. Классификация промышленных роботов.
- •Вопрос 3. Статические характеристики систем автоматического управления. Прямая и обратная задачи преобразований Лапласа
- •Преобразование Лапласа
- •Вопрос 4. Аналоговые датчики
- •Вопрос 5. Операторная форма записи дифференциальных уравнений, определение оригиналов по изображениям
- •Билет№5 Вопрос 1. Распределенные системы управления.
- •Вопрос 2. Параметры, определяющие технический уровень роботов.
- •Вопрос 3. Статическое и астатическое регулирование
- •Вопрос 4. Понятие исполнительного устройства (механизма)
- •Вопрос 5. Классификация систем управления по уровню и ступеням управления
- •Билет№6 Вопрос 1. Программное обеспечение асутп
- •Вопрос 2. Системы координат промышленных роботов (пр). Задача определения степеней подвижности пр.
- •Вопрос 3. Динамические режимы функционирования сау.
- •Вопрос 4. Полоса пропускания и шум при передачи сигналов в асутп
- •1.4. Передача измерительных сигналов
- •Вопрос 5. Характеристика одноконтурных и многоконтурных систем управления.
- •Билет №7. Вопрос 1. Исполнительные механизмы. Их виды.
- •Вопрос 2. Число степеней подвижности промышленных роботов.
- •Вопрос 3. Линеаризация уравнений динамики сау. Задача выбора оптимального способа линеаризации.
- •Вопрос № 4. Погрешность и точность датчиков.
- •Вопрос № 5. Основные виды связей между элементами систем автоматического управления.
- •Билет№8 Вопрос 1. Виды электродвигательных исполнительных механизмов. Рассчитать передаточную функцию исполнительного механизма, изменяющего расход жидкости при наполнении емкости.
- •Вопрос 2. Сравнительная характеристика приводов пр.
- •Вопрос 3. Понятие о передаточных функциях.
- •Вопрос 4. Динамические характеристики датчиков
- •Вопрос 5. Классификация систем управления по информационным функциям.
- •Билет№9 Вопрос 1. Расчет электромагнитных исполнительных механизмов.
- •Вопрос 2. Элементы пневмопривода промышленных роботов.
- •Вопрос 3. Элементарные динамические звенья.
- •Вопрос 4. Статические характеристики датчиков. Рассчитать статическую характеристику датчика температуры
- •Вопрос 5. Классификация систем управления по характеру изменения задающего устройства.
- •Билет№10. Вопрос 1. Электромеханические муфты. Классификация.
- •Вопрос 2. Типовая схема и элементы управления пневмопривода промышленных роботов.
- •Вопрос 3. Понятие о временных характеристиках сау. Рассчитать переходную характеристику электромеханической муфты.
- •Вопрос 4. Бинарные и цифровые датчики.
- •Вопрос 5. Виды частотных характеристик и способы их определения.
- •Билет№11 Вопрос 1. Релейные исполнительные механизмы
- •Вопрос 2. Демпфирование пневмопривода промышленных роботов.
- •Вопрос 3. Частотные характеристики сау
- •Вопрос 4. Цифровые и информационно-цифровые датчики
- •Вопрос 5. Понятие элементарного звена и типовые звенья систем автоматического управления
- •Билет№12 Вопрос 1. Электромагнитные релейные исполнительные механизмы.
- •Вопрос 2. Пневматический следящий привод
- •Вопрос 3. Частотные характеристики типовых звеньев.
- •2.1. Пропорциональное звено (усилительное, безынерционное)
- •2.2. Апериодическое звено
- •2.3. Апериодическое звено 2-го порядка (колебательное)
- •Вопрос 4. Аналоговые датчики
- •Вопрос 5. Способы соединения звеньев
- •Билет№13 Вопрос 1. Унификация средств автоматизации.
- •Вопрос 2. Гидравлический привод пр
- •Вопрос 3. Законы регулирования. Законы регулирования: п, пи, пид
- •Вопрос 4. Согласование и передача сигналов в асу тп
- •Вопрос 5. Характеристика комбинированных аср
- •Билет№14 Вопрос 1.Этапы развития средств автоматизации
- •Вопрос 2.Электрический привод промышленных роботов
- •Вопрос 3. Понятие устойчивости сау (Устойчивость сау)
- •5.1. Устойчивость объектов управления
- •Вопрос 4. Выбор носителя сигнала в информационно-измерительных каналах асу тп
- •Вопрос 5. Характеристика адаптивных систем управления.
- •Билет№15 Вопрос 1. Опишите структуру комплекса асутп
- •Вопрос 2. Комбинированный привод промышленных роботов
- •Вопрос 3. Критерий устойчивости Найквиста
- •Примеры годографов Найквиста астатических сар и сар с чисто мнимыми корнями
- •Вопрос 4. Бинарные (двухпозиционные) исполнительные механизмы
- •Вопрос 5. Использование микропроцессорной техники в системах автоматического управления.
- •Билет№16 Вопрос 1. Распределенные системы управления
- •Вопрос 2. Задачи и история робототехники, основные предпосылки к применению
- •Вопрос 3. Критерий устойчивости Михайлова
- •Определение типа границы устойчивости по виду годографа Михайлова
- •Вопрос 4. Использование микропроцессорной техники в системах автоматического управления.
- •Вопрос 5. Исполнительные механизмы с электроприводом.
- •Билет №17. Вопрос 1. Программное обеспечение асутп.
- •Вопрос 2. Поколения промышленных роботов.
- •Вопрос 3. Критерий устойчивости Рауса-Гурвица.
- •5.5.1.1. Критерий Гурвица
- •5.5.1.2. Критерий Рауса
- •Вопрос 4. Ввод аналоговых сигналов в компьютер.
- •Вопрос 5. Запас устойчивости линейных стационарных систем автоматического управления.
- •Билет№18 Вопрос 1. Исполнительные механизмы. Их виды.
- •Вопрос 2. Классификация промышленных роботов.
- •Вопрос 3. Статические и астатические системы регулирования
- •Вопрос 4. Цифро-аналоговое преобразование сигналов
- •Вопрос 5. Использование эвм в замкнутых и разомкнутых контурах управления
- •Билет№19 Вопрос 1. Электромеханические муфты. Классификация.
- •Вопрос 2. Система координат промышленных роботов.
- •Вопрос 3. Понятие о частотных характеристиках сау.
- •Вопрос 4. Аналого-цифровые преобразователи
- •Вопрос 5. Требования к эвм, используемым в асу тп.
- •Билет№20 Вопрос 1. Электромагнитные релейные исполнительные механизмы.
- •Вопрос 2. Число степеней подвижности промышленных роботов.
- •Вопрос 3. Элементарные динамически звенья
- •Вопрос 4. Понятие датчика
- •Вопрос 5. Назовите самые важные характеристики цап, которые нужно учитывать при его выборе или разработке.
Вопрос 3. Динамические режимы функционирования сау.
Обычно на управляемый процесс действуют различные возмущения, отклоняющие управляемый параметр от заданной величины. Установившийся режим является не более чем частным случаем состояния системы на определенных временных интервалах ее работы. Процесс установления требуемого значения управляемой величины называется регулированием, и, ввиду инерционности звеньев регулирования, развивается во времени.
Рис.
2.3.1.
Динамический режим, характеризующийся протеканием в ней определенных переходных процессов, является основным режимом работы систем. Зависимость выходной величины от изменяющейся во времени входной величины называют динамической характеристикой системы.
Все динамические характеристики можно разделить на две группы.
К первой группе относятся зависимости выходной величины системы от времени, если входная величина изменяется по типовому закону (импульсный, линейный и т.п.). Это так называемые временные характеристики.
Вторую группу динамических характеристик составляют частотные характеристики. К ним относятся зависимости выходной величины или ее параметров от частоты входной величины, изменяющейся по гармоническому закону.
Переходные процессы в системе. Зависимость выходной величины системы от времени, если входная величина изменилась на единый скачок, называют переходной характеристикой.
Рис.
2.3.2.
Таким образом, переходная характеристика - это реакция элемента системы на ступенчатое изменение входной величины, как правило, единичное x(t) = 1(t). Под входной величиной понимается любой из управляющих или возмущающих воздействий, в многомерных или многоканальных системах – одно из воздействий. Переходная характеристика может быть задана таблично, графически или аналитически в виде системы уравнений {x = 1(t), y = F(t)}.
Оценки переходных характеристик производятся с помощью следующих показателей:
∎ Характер временной зависимости. По характеру зависимости переходные характеристики делятся на монотонные и колебательные. Переходная характеристика считается монотонной, если она имеет не более одного экстремума. В противном случае переходную характеристику относят к колебательной (немонотонной).
∎ Время переходного процесса – это время, в течение которого выходная величина после начала изменения входной достигает нового установившегося значения. Теоретически это время стремиться к бесконечности, поэтому за время переходного процесса принимают время, за которое выходная величина достигает нового установившегося значения с заданной степенью точности tпп, обычно порядка 3-5% от нового установившегося значения. Нетрудно заметить (рис. 2.3.2). что степень точности соответствует статической ошибке регулирования.
∎ Динамическая ошибка - это разность между действительным значением выходной величины yi в данный момент (ti) и её новым установившемся значением y0, т.е
y(t) = y(t) – y0. (2.2.1)
Динамическая ошибка представляет собой функцию времени. Максимальную положительную относительную ошибку за время переходного процесса называют выбросом. Выброс определяется формулой (см. рис. 2.3.2):
= (yм – y0) / y0 (2.2.2)
∎ Колебательность - количество полных колебаний за время переходного процесса. Колебательность может характеризоваться частотой или периодом колебаний выходной величины.
Импульсная характеристика является другой не менее распространенной временной характеристикой системы. Её называют импульсной переходной характеристикой или функцией веса и обозначают h(t). Это зависимость выходной величины системы от времени, если входная величина изменилась на единичный идеальный импульс.
Рис. 2.3.3.
Для получения импульсной характеристики используют импульсы прямоугольной формы (рис. 2.3.3). Такой импульс аналитически определяется выражениями:
A(t) = 0, 0 > t > ;
A(t) = a, 0 ≤ t ≤ ;
A(t)
dt = a
Рис.
2.3.4.
Импульсная характеристика - это реакция системы на идеальное единичное импульсное изменение входной величины. Она может быть задана аналитически в виде системы уравнений {x = d(t), y = F(t)}. Так как идеальный импульс представляет собой производную скачка, d 1(t) / dt, то импульсная характеристика есть производная переходной характеристики системы. Оценка импульсной характеристики производится теми же показателями, что и переходной. Пример характеристики приведен на рис. 2.3.4.