- •Направление подготовки - 240100.62 «Химическая технология»
- •Атом углерода, его особенности, валентные состояния
- •2. Ковалентные связи в соединениях углерода
- •3. Факторы, влияющие на доступность электронов
- •1. Индуктивный эффект – используется для характеристики электронного облака σ-связи
- •Мезомерный эффект – используется для характеристики электронного облака π –связи
- •4. Энергетика реакции
- •5.Ароматичность Прежде чем приступить к рассмотрению темы, необходимо вспомнить теорию резонанса. Основные положения теории резонанса
- •Определение и классификация
- •Структурная формула бензола
- •Строение бензола
- •Строение и ароматичность нафталина
- •Механизм электрофильного замещения на примере бензола
- •Правила ориентации в бензольном кольце. Заместители первого и второго рода.
- •Теория ориентации
- •Электрофильное замещение в нафталине
- •Глава 1. Методы получения органических сульфокислот
- •1. Общие сведения о процессе сульфирования
- •2. Схемы и механизм сульфирования аренов
- •3. Особенности сульфирования аренов серной кислотой
- •4. Особенности сульфирования аренов олеумом и серным ангидридом
- •5. Основные способы выделения сульфокислот
- •6. Сульфирование растворами триоксида серы в инертных растворителях
- •7. Сульфирование комплексными соединениями триоксида серы
- •Глава 2. Процессы нитрования органических соединений
- •1. Механизм реакции нитрования ароматических соединений
- •2. Влияние основных технологических параметров на процесс нитрования
- •3. Типовой процесс выделения нитропродуктов
- •4. Нитрование смесью азотной и серной кислот
- •5. Нитрование концентрированной азотной кислотой
- •6. Нитрование смесью концентрированной азотной кислоты с уксусным ангидридом
- •7. Нитрование разбавленной азотной кислотой
- •Глава 3. Нуклеофильное замещение галогена в молекуле органического соединения
- •Сведения о механизмах реакции
- •Основные факторы, влияющие на ход процесса
- •Использование катализаторов
- •Процессы гидролиза галогенидов
- •Замена атома галогена на алкокси- и феноксигруппы (синтез простых эфиров)
- •Замена атома галогена на меркапто и алкил(арил)тиогруппы (синтез тиоспиртов и тиоэфиров)
- •Замена атома галогена на аминогруппы (синтез аминов)
- •Замена атома галогена на цианогруппу (синтез нитрилов кислот)
- •Замена атома галогена на группу -so3Na (синтез сульфокислот)
- •Замена атома галогена на группу –no2 (синтез нитросоединений)
- •Глава 4. Процессы нитрозирования. Основные реакции диазосоединений
- •1. Химизм процесса и краткая характеристика продуктов реакции
- •2. Влияние основных технологических параметров на ход процесса диазотирования
- •3. Кислотно-основные превращения ароматических диазосоединений
- •4. Реакции замены диазониевой группы
- •5. Реакция азосочетания
- •Глава 5. Методы получения органических галогенидов
- •1. Галогенирование ароматических соединений
- •Влияние основных технологических факторов на процесс галогенирования аренов
- •Особенности технологии процесса галогенирования ароматических соединений
- •Хлорирование аренов в безводной среде
- •Бромирование ароматических соединений
- •1. Окисление растворов бромида натрия хлором (непрероывный метод)
- •2. Окисление растворов бромида натрия гипохлоритом натрия (периодический):
- •Иодирование ароматических соединений
- •Примеры галогенирования ароматических соединений в производстве лекарственных веществ и витаминов
- •2. Галогенирование алканов и в боковую цепь аренов Реакции с молекулярным галогеном
- •Галогенирование с использованием специфических переносчиков галогена (спг)
- •Особенности технологии гомолитического галогенирования
- •Примеры гомолитического галогенирования в производстве лекарственных веществ и витаминов
- •3. Синтез галогенидов из непредельных соединений
- •4. Галогенирование альдегидов, кетонов и карбоновых кислот Радикальное галогенирование альдегидов, кетонов и карбоновых кислот
- •Примеры реакций галогенирования карбонильных соединений
- •Гетеролитическое галогенирование карбоновых кислот
- •5. Замена гидроксильных групп в спиртах, фенолах и карбоновых кислотах на галоген
- •6. Замещение одних атомов галогена на другие
- •Глава 6. Процессы алкилирования
- •1. Алкилирование аренов по Фриделю-Крафтсу
- •2. Особенности технологии алкилирования аренов по Фриделю-Крафтсу
- •4. Алкилирование по атому азота (n-алкилирование)
- •6. Гидрокси-, галоген- и аминометилирование
- •Глава 7. Процессы ацилирования
- •1. Ацилирование по атому углерода (с-ацилирование)
- •2. Ацилирование по атому азота (n-ацилирование)
Галогенирование с использованием специфических переносчиков галогена (спг)
Специфические переносчики галогена позволяют в значительной мере устранить недостатки гомолитического галогенирования молекулярным галогеном.
Для радикального хлорирования в качестве специфического переносчика галогена наиболее часто используют сульфурилхлорид (SO2Cl2), а для бромирования — N-бромсукцинимид (NБС). Инициатором радикальной реакции с участием СПГ может быть как УФ освещение или нагрев, так и химические реагенты, например, перекись бензоила и др.
При галогенировании сульфурилхлоридом в лимитирующей стадии (отщепление атома водорода) участвует не атом хлора, а значительно менее активный радикал–переносчик SO2Cl·, реакционная способность которого легко регулируется температурой реакции, что позволяет замещать только наиболее подвижный атом водорода и получать моногалогениды.
Функция N-бромсукцинимида сводится к обеспечению низкой стационарной концентрации брома (дозированию брома). Механизм реакции (SR) сохраняется.

![]()
Имеется множество других переносчиков галогена. Во всех случаях необходим катализатор, инициирующий реакцию. Обычно это пероксид или УФ облучение.
Особенности технологии гомолитического галогенирования
Гомолитическое галогенирование одинаково хорошо идет в газовой и в жидкой фазе. Твердые вещества галогенируют в среде растворителя, при этом необходимо учитывать полярность и поляризуемость растворителя.
Жидкофазный процесс, как правило, проводят при температуре кипения реакционной массы (высококипящие углеводороды примерно при 180—200 °С), избыточное тепло отводится с парами кипящей жидкости, которая конденсируется в обратном холодильнике и стекает в реактор. Перемешивание реакционной массы происходит за счет кипения и барботирования хлора.
Для инициирования реакций галогенирования чаще всего используют специальные погружные лампы с УФ излучением.
Радикальное галогенирование необходимо оберегать от ингибирующего действия примесей (например, кислорода, даже ничтожное количество его резко снижает квантовый выход), а также катализаторов гетеролитического галогенирования, например, железа.
Аппаратура должна быть изготовлена из освинцованной стали, эмалированного чугуна, кислотостойких неметаллических материалов или стекла.

Рис. 6. Аппаратурная схема непрерывного хлорирования алканов
1 — колонна из освинцованной стали; 2 — напорный бак; 3 и 4 — теплообменники
Хлоратором (1, рис. 6) может служить колонна из освинцованной стали или керамики, заполненная керамической или стеклянной насадкой. Хлорируемое сырье из напорного бака (2) через обогреваемый дозирующий бачок (3) подается в верхнюю часть колонны. Хлор вводится противотоком снизу. Подачу галогена регулируют таким образом, чтобы он практически отсутствовал в отходящих газах. Хлорированная масса удаляется через гидрозатвор из нижней части колонны, а хлористый водород и пары субстрата поступают из верхней части колонны в обратный холодильник (4). Здесь пары жидкости конденсируются, и конденсат стекает в колонну.
Примеры гомолитического галогенирования в производстве лекарственных веществ и витаминов

Рис. 7. Аппаратурная схема хлорирования толуола в паровой фазе
1 — аппарат, 2 — сосуд хлорирования, 3 — теплообменник
-
Хлорирование толуола в паровой фазе (Н.Д. Зелинский). В специальный освещаемый сосуд (2, рис. 7), установленный на дефлегматоре, поступает газообразный хлор, а также из аппарата (1) через дефлегматор пары толуола. Образующийся бензилхлорид, имеющий более высокую температуру кипения, чем толуол, конденсируется, стекает в аппарат и выводится из сферы реакции. Пары толуола, не вступившие в реакцию, конденсируются в теплообменнике (3) и возвращаются в аппарат.
Химизм процесса можно представить следующей схемой:

Получаемые гомолитическим хлорированием толуола бензилхлорид, бензилиденхлорид и бензилидинхлорид широко используются в качестве промежуточных продуктов в синтезе лекарственных соединений. Кроме того, из бензилхлорида получают бензиловый спирт и цианистый бензил, из бензилиденхлорида — бензойный альдегид, а из бензотрихлорида — бензоилхлорид.
-
Бромирование о-бромтолуола, а также хлорирование п- и о-хлортолуола осуществляют в жидкой фазе при кипении реакционной массы в течение 4—7 часов при освещении кварцевой лампой или в присутствии перекиси бензоила. Температура в конце реакции около 200 °С:


-
о-Ксилол бромируют с использованием N-бромсукцинимида при около 90 °С:

