
- •7.092201 "Электрические системы и комплексы транспортных средств"
- •7.092201.02 "Эксплуатация судовых автоматизированных систем"
- •1. Организация работы над курсовым проектом
- •1.1. Цель курсового проектирования
- •1.2. Порядок выполнения и защиты проекта
- •2. Структура и правила оформления проекта
- •2.1.Основные понятия
- •2.2. Стадии разработки эу
- •2.3. Виды конструкторской документации
- •2.4. Пояснительная записка
- •2.4.1. Основные правила изложения и оформления текста
- •2.4.2. Чертежи в проекте
- •2.5. Правила выполнения схем
- •2.5.1. Общие понятия и положения
- •2.5.2. Графические обозначения
- •2.5.3. Общие правила построения схем
- •2.5.4. Текстовая информация
- •3. Разработка конструкции электронного устройства
- •3.1. Основные понятия
- •3.2. Основные методы стандартизации эу
- •3.3. Требования технической эстетики
- •3.4. Учет условий эксплуатации
- •3.5. Разработка электрических схем
- •3.5.1. Основные понятия
- •3.5.2. Структурные схемы
- •3.5.3. Выбор элементной базы
- •3.5.4. Принципиальные схемы
- •3.5.5. Выполнение схем и обозначение эрэ
- •3.5.6. Дополнительная информация на принципиальных схемах
- •3.5.7. Перечень элементов принципиальной схемы
- •3.6. Изготовление чертежей
- •3.6.1. Размещение чертежей на бумажном листе
- •3.6.2. Основные надписи
- •3.6.3. Содержание чертежа общего вида
- •3.6.4. Упрощение изображений на чертеже общего вида
- •3.6.5. Сборочные чертежи функциональных печатных узлов
- •3.6.6. Таблица составных частей изделий
- •3.7. Разработка печатных плат
- •3.7.1. Основные требования
- •3.7.2. Конструирование печатной платы
- •3.7.3. Установка навесных элементов на печатную плату
- •3.7.4. Чертежи печатных плат
- •4. Электрические расчеты
- •4.1. Основные понятия
- •4.2. Основная задача расчета
- •4.3. Последовательность и типы расчетов
- •4.4. Расчет электронных схем
- •4.5. Выбор радиоэлементов
- •Транзисторы
- •Полупроводниковые диоды
- •Резисторы
- •Конденсаторы
- •Микросхемы
- •4.6. Расчет типовых электронных схем
- •Расчет усилительных каскадов
- •Требуемая емкость с1 конденсатора с1 получается при параллельном соединении емкостей 2000 и 100 пФ, а конденсатора с2 - 6200 и 100 пФ.
- •Рассчитанное значение индуктивности Lμ должно отвечать условию
- •5. Расчет показатеЛей надежности электронных устройств
- •5.1. Показатели надежности неремонтируемых объектов
- •5.2. Расчеты надежности неремонтируемых систем
- •5.3. Составление логических схем
- •5.4. Виды расчетов надежности
- •5.5. Расчеты надежности систем, которые отказывают при отказе одного элемента (нерезервированных систем)
- •6. Индивидуальное задание на курсовой проект
- •Номинальные сопротивления резисторов, номинальные емкости конденсаторов
- •Резисторы постоянные непроволочные млт
- •Размеры резисторов млт
- •Приложение д Переменные резисторы
- •Назначение и конструкция резисторов
- •Конденсаторы постоянной емкости к онденсаторы оксидные к50-6
- •К онденсаторы оксидные к50-16
- •К онденсаторы оксидно-полупроводниковые к53-7
- •Конденсаторы керамические км-4
- •Размеры конденсаторов км-4, вариант "б". Изолированные
- •Номинальная емкость, допустимая реактивная мощность для конденсаторов км-4
- •Конденсаторы керамические клс-1
- •Номинальная емкость, допустимая реактивная мощность для конденсаторов клс-1
- •Обозначения условные графические в схемах (уго)
- •Двоичные логические элементы
- •Э лементы аналоговой техники
- •Интенсивности отказов элементов
- •Требования Регистра судоходства Украины к устройствам автоматики, содержащим элементы электроники
- •Список литературы
- •Расчет и проектирование судовых электронных устройств на транзисторах.
- •Тираж ____ экз. Подписано к печати _________
Микросхемы
1. Главным условием применения микросхем является строгое соблюдение режимов работы, рекомендованных в технических условиях на выбранную микросхему. Это относится в первую очередь к величине напряжения питания, сопротивления нагрузки и диапазону температуры.
2. Необходимо рассмотреть возможность применения микросхем общего применения, характеризуемых низкой стоимостью, широким диапазоном напряжения питания, защищенным входом и выходом.
3. Рекомендации по применению аналоговых интегральных схем приводятся в справочной литературе. Так, наиболее полно требованиям к усилителям низкой частоты удовлетворяют следующие серии микросхем 122, 123, 140, 153, 173, 174, 224, 226, 235, 237.
4. Из всего многообразия логических ИС в современной цифровой электронике наиболее широкое распространение находят транзисторно-транзисторные логические (ТТЛ), в том числе и с применением диодов Шоттки (ТТЛШ), логические элементы с эмиттерными связями и на МДП-транзисторах.
5. В настоящее время одними из наиболее перспективных ИС принято считать ТТЛ — схемы, обладающие высокой технологичностью и весьма высокими показателями качества. Отечественной промышленностью освоено производство ТТЛ-ИС серий 106, 130, 133. 134, 135, 141, 155, 158, 230, 243, 530, 531, 533, 555.
6. Логические ИС со связью по эмиттеру (ЭСТЛ) относятся к числу быстродействующих и сверхбыстродействующих микросхем с большой потребляемой мощностью. Поэтому ЭСТЛ целесообразно использовать в тех устройствах, к которым предъявляются требования максимального быстродействия, а экономичность имеет второстепенное значение. ЭСТЛ лежит в основе таких серий ИС, как 100, 137, 138, 187, 191. 223, 229, 500, предназначенных для использования в ЭВМ сверхвысокого быстродействия и скоростных устройств дискретной обработки информации.
7. Логические МДП-ИС серий 108, 120, 144, 147, 172, 178 выполнены на транзисторах с каналами одного типа проводимости и относятся к схемам низкого быстродействия средней мощности. Так, один логический элемент ИС серии 147 потребляет 45 мВт и имеет среднее время задержки не более 2500 нс.
Более высоким быстродействием, очень малой потребляемой мощностью и весьма большим коэффициентом разветвления по выходу обладают комплементарные МДП-ИС серий 164, 176, 564, 764. Однако по стоимости и степени интеграции они уступают микросхемам с каналами одного типа проводимости.
8. При выборе микросхем необходимо избегать применения ИС разных серий. Если это неизбежно, то лучше применять микросхемы с одинаковым напряжением питания.
9. В заключение отметим некоторые особенности ИС, которые необходимо учитывать при монтаже и эксплуатации.
Для устранения паразитной генерации по цепям питания в их шинах, возле каждого операционного усилителя (ОУ), рекомендуется установить конденсаторы емкостью 0,01—0,05 мкФ.
Проводники печатной платы, подводящие напряжение питания, могут создавать паразитные токи, воздействующие на входы ОУ. Для схем, чувствительных к малым токам, нужно предусмотреть защиту входов ОУ от токов утечки. Защиту целесообразно выполнить в виде проводящего кольца печатной дорожки, которое располагают вокруг входов ОУ и соединяют с землей.
Для защиты от всплесков дифференциального сигнала при переходных процессах между входами ОУ можно включить встречно-параллельные диоды. Если ОУ не имеют встроенной защиты от короткого замыкания на выходе, то необходимо последовательно с выходным зажимом включить резистор сопротивлением 200 Ом, а цепь обратной связи подключить к другому выводу резистора. Такое включение практически не увеличивает выходное сопротивление ОУ.
Эксплуатация ТТЛ-ИС также имеет ряд особенностей. При проектировании и монтаже аппаратуры для повышения устойчивости работы ТТЛ-ИС их свободные входы необходимо подключить через резистор сопротивлением 1 кОм к источнику питания. К каждому резистору допускается подключение 20 свободных входов. При монтаже микросхем на печатных платах необходимо предусмотреть вблизи разъема подключение конденсаторов из расчета не менее 0,1 мкФ на одну ИС, исключающих низкочастотные помехи. С целью устранения высокочастотных помех рекомендуется устанавливать по одному керамическому конденсатору на группу микросхем числом не более 10 из расчета 0,002 мкФ на одну ИС.