Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора (3).docx
Скачиваний:
18
Добавлен:
25.04.2019
Размер:
1.46 Mб
Скачать

5 . Эффект Рамзауэра – Таунсенда.

В начале прошлого века Нем. физик Рамзауэр исследовал рассеяние электронов на атомах аргона при энергиях электрона от менее чем одного до нескольких десятков электрон-вольт. Обнаруженный им эффект назвали в последствии его именем. Он состоял в аномальной проницаемости некоторых газов (в частности аргона) для медленных электронов. Брался триод, в одной половине которого электроны не ускорялись, а в другой ускорялись. Трубку триода наполняли инертным газом (аргон). Электрон, попадая с раскалённой нити катода в пространство триода, движется по направлению к катоду и сталкивается с молекулой газа; при этом электрон рассеивается на ней. Поэтому, чем больше будет энергия электрона, тем больше шансов, что он пролетит без столкновения, то есть тем меньше вероятность рассеяния. Таким образом, с ростом ускоряющей разности потенциалов сила тока в цепи катод – анод должна возрастать. Графически зависимость между данными величинами можно представить так (см. рис. 17). Здесь зависимость P=P(E) есть зависимость в ероятности рассеяния электрона от его энергии. Введём теперь в рассмотрение несколько новых величин, которые впоследствии помогут нам количественно описать эффект Рамзауэра. Будем рассматривать сечение рассеяния частиц. Понятие сечения рассеяния связано с вероятностью столкновения частицы с атомом или ядром. Будем считать частицу точечной. Пусть электрон падает на площадь объёма, в котором расположены молекулы с концентрацией n0 (рис. 18). В слое толщиной dx в направлении движения электрона находится число молекул n0dV=n0sdx, а сумма их поперечных сечений, которая как бы закрывает собой часть площади S, равна ds=(сигма)n0sdx, где(сигма)-коэффициент пропорциональности.Отсюда следует, что вероятность попадания электрона в одну из молекул в слое dx будет равна: . Как видно из полученной формулы, коэффициент имеет размерность площади: , отсюда и назв-ание сечения рассеяния. Рассмотрим, как же можно найти сечение рассеяния. Пусть у нас есть поток частиц, движущихся в газообразной среде. Тогда, вследствие рассеяния, плотность потока частиц убывает на величину dl=-ldP. Если частица прошла путь dx, то dl(x)=-l(x)n0(сигма)dx. Решаем обыкновенное дифференциальное уравнение с разделяющимися переменными.

; . .

Последняя формула позволяет из опыта получить значение коэффициента рассеяния.

Введём теперь понятие длины свободного пробега. Так называют расстояние, пройденное частицей между двумя последовательными соударениями. Увеличение длины свободного пробега электрона напрямую связано с уменьшением вероятности столкновения его с молекулой; уменьшением сечения рассеяния. Следовательно, возрастает вероятность пролёта электрона между катодом и анодом без соударения с молекулой, то есть возрастает ток в цепи катод – анод. Длина свободного пробега пропорциональна энергии электрона. Таким образом, зависимость(сигма)=(сигма)(E) будет иметь вид аналогичный указанному на первом из рисунков 17. Однако в действительности наблюдалась картина, указанная на рисунках 19 и 20. То есть при уменьшении энергии электрона от нескольких десятков электрон-вольт, сечение его рассеяния на аргоне растёт, как это и предсказывается теорией. Затем при энергии около 16 эВ поперечное сечение достигает максимума и при дальнейшем уменьшении энергии электрона уменьшается. При энергии электрона примерно 1 эВ сечение близко к нулю и затем начинает увеличиваться (см. рис. 20).

Увеличение сечения с ростом энергии электрона и тем более почти полное исчезновение рассеяния вблизи энергии 1 эВ нельзя понять с точки зрения классических представлений, так как при этой энергии атомы аргона становятся как бы не существующими для электронов, и электроны пролетают сквозь них без столкновения. Объясняется это так. Электрону мы можем поставить в соответствие волну де Бройля . Тогда при некоторой длине волны де Бройля (она, как известно, зависит от энергии электрона), будет наблюдаться дифракционный максимум или минимум. Здесь молекула газа является препятствием, на котором рассеивается электронная волна. Условие, при котором происходит хорошо выраженная дифракция таково, что длина падающей волны должна быть порядка диаметра атома. Тогда, если рассматривать оптическую аналогию, за препятствием возникает светлое пятно, а не тень. То есть электрон проходит сквозь атом без отклонения и сечение его рассеяния на атоме близко к нулю