Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпора.docx
Скачиваний:
23
Добавлен:
25.04.2019
Размер:
1.45 Mб
Скачать

6) Свободные гармонические колебания физического маятника

Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходя­щей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый угол а, то в со­ответствии с уравнением динамики враща­тельного движения твердого тела (18.3) момент М возвращающей силы можно

223

записать в виде

где У — момент инерции маятника относи­тельно оси, проходящей через точку О, lрасстояние между точкой подвеса и цент­ром масс маятника, F=-mgsinmg — возвращающая сила (знак минус обусловлен тем, что направления F и  всегда противоположны; sin соответствует малым колебаниям маятни­ка, т. е. малым отклонениям маятника из положения равновесия).

Уравнение (142.4) можно записать в виде

Принимая

0=mgl/J. (142.5) получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

=0cos(0t+). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маят­ник совершает гармонические колебания с циклической частотой 0 (см (142.5)) и периодом

Т = 2/0=2J/(mgl)=2L/g.

(142.7)

где L = J/(ml) — приведенная длина физи­ческого маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), по­лучим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса пе­ренести в центр качаний, то точка О пре­жней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится

7) Гармонические колебания в электромагнитном колебательном контуре

Среди исследований различных электрических явлений особое место занимают исследования электромагнитных колебаний. При колебательном процессе электрические физические величины (заряды, токи) периодически изменяются и процесс сопровождается взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний применяется колебательный контур — цепь, которая состоит из последовательно включенных резистора сопротивлением R, катушки индуктивностью L, и конденсатора емкостью С. Исследуем последовательные стадии колебательного процесса в идеализированном контуре, у которого сопротивление пренебрежимо мало (R≈0). Для возбуждения колебаний в контуре конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Следовательно, в начальный момент времени t=0 (рис. 1а) между обкладками конденсатора появится электрическое поле, энергия которого равна Q2/(2C) . Если конденсатор замкнуть на катушку индуктивности, то он начнет разряжаться, и в контуре начнет течь возрастающий со временем ток I. В результате энергия электрического поля будет падать, а энергия магнитного поля катушки (она равна (1/2)LI2 ) - увеличиваться.

Так как R≈0, то, используя закон сохранения энергии, полная энергия поскольку полная энергия на нагревание не тратится. Поэтому в момент t=(1/4)T, когда конденсатор полностью разрядится, энергия электрического поля станет равной нулю, а энергия магнитного поля (а следовательно, и ток) достигает максимального значения (рис. 1б). Далее, начиная с этого момента ток в контуре будет уменьшаться; значит, начнет уменьшаться магнитное поле катушки, и в ней индуцируется ток, который течет (по правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Далее, начнет перезаряжаться конденсатор, появится электрическое поле, которое будет стремиться ослабить ток, который в конце концов станет равным нулю, а заряд на обкладках конденсатора станет максимальным (рис. 1в). Далее те же процессы будут протекать в обратном направлении (рис. 1г) и к моменту времени t=Т система придет в первоначальное состояние (рис. 1а). После этого рассмотренный цикл разрядки и зарядки конденсатора будет повторяться. Если бы в контуре потерь энергии не было, то совершались бы периодические незатухающие колебания, т.е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, сила тока I, текущего через катушку индуктивности и напряжение U на конденсаторе . Значит, в контуре появляются электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей. С электрическими колебаниями в колебательном контуре можно провести аналогию с механическими колебаниями маятника (рис. 1 внизу), которые сопровождаются взаимными превращениями кинетической и потенциальной энергий маятника (на рисунке Е - кинетическая энергия, П - потенцияльная). В данном случае энергия электрического поля конденсатора Q2/(2C) аналогична потенциальной энергии маятника, энергия магнитного поля катушки (LQ2/2) — кинетической энергии, сила тока в контуре — скорости движения маятника. Индуктивность L аналогична массе m, а сопротивление контура — силе трения, которая действуюет на маятник. По закону Ома, для контура, который содержит резистор сопротивлением R, катушку индуктивностью L, и конденсатор емкостью С где IR—напряжение на резисторе, UC = Q/C - напряжение на конденсаторе, ξs = -L(dI/dt) – э.д.с. самоиндукции, которая возникает в катушке при протекании в ней переменного тока (ξs – единственная э.д.с. в контуре). Значит, (1) Разделив формулу (1) на L и подставив и получим дифференциальное уравнение колебаний заряда Q в контуре: (2) В рассматриваемом колебательном контуре внешние э.д.с. отсутствуют, значит колебания в контуре представляют собой свободные колебания. Если сопротивление R=0, то свободные электромагнитные колебания в контуре будут гармоническими. Тогда из (2) найдем дифференциальное уравнение свободных гармонических колебаний заряда в контуре: Из формулы (1) следует, что заряд Q гармонически колеблеься по закону (3) где Qm — амплитуда колебаний заряда конденсатора с циклической частотой ω0, которая называется собственной частотой контура, т. е. (4) и периодом (5) Выражение (5) впервые было получено У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (6) где Im = ω0Qm — амплитуда силы тока. Напряжение на конденсаторе равно (7) где Um=Qm/C - амплитуда напряжения. Из формул (3) и (6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на π/2, т.е., когда ток равен максимальному значению, заряд (а также и напряжение (7)) обращается в нуль, и наоборот.