
- •2) Измерение интервалов времени и длины. Собственное время, собственная длина.
- •3) Виды механического движения. Модели в механике: модель материальной точки, абсолютно твёрдого тела, сплошной среды.
- •4) Кинематическое описание движения. Понятие степеней свободы. Уравнения движения моделей. Число степеней свободы моделей
- •5) Кинематические параметры поступательного и вращательного движений: линейные и угловые перемещения, скорости и ускорения
- •6) Тангенциальное и нормальное линейные ускорения. Определение, значение, связь с угловыми переменными
- •7) Динамические параметры механических систем: масса, центр инерции, импульс. Связь между импульсом и скоростью центра инерции
- •8) Динамические параметры механических систем: момент инерции. Теорема Штейнера.
- •13) Главные оси инерции. Свободные оси вращения. Устойчивые оси вращения.
- •14) Энергия как универсальная мера интенсивности движения. Полная энергия, энергия покоя. Кинетическая энергия в релятивистском случае.
- •15) Кинетическая энергия поступательного и вращательного движений.
- •16) Плоское движение. Кинетическая энергия тела, совершающего плоское движение.
- •17) Потенциальная энергия.
- •18) Сила как мера взаимодействия тел. Момент силы, работа и мощность силы
- •19) Связь между силой и потенциальной энергией. Работа потенциальных сил.
- •20) Законы сохранения в замкнутых системах и их связь со свойствами пространства и времени
- •21) Механическая энергия. Законы сохранения. Консервативные и не консеравтивные системы.
- •22) Законы движения в незамкнутых системах
- •23) Законы Ньютона и их современная трактовка. Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •24) Законы динамики вращательного движения
- •1. Момент силы.
- •2. Момент инерции тела.
- •2. Основной закон динамики вращательного движения.
- •3. Условия равновесия тел.
- •25) Плоское движение. Динамика движения твёрдого тела на примере маятника Максвела
- •26) Частные законы сохранения в незамкнутых системах.
- •1) Электромагнитное поле. Электрический заряд и его свойства.
- •2) Напряжённость электромагнитного поля
- •3) Сила Лоренца. Движение зарядов в электромагнитном поле.
- •4) Напряжённость поля не подвижного точечного заряда. Свойства поля
- •5) Электростатическое поле системы зарядов. Принцип суперпозиции. Поле электрического диполя
- •6) Определение потока вектора напряжённости электростатического поля.
- •7) Теорема Острограского-Гауса.
- •8) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной нити
- •9) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной плоскости
- •10) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной сферы
- •11) Поле бесконечного конденсатора или двух разноимённо заряженных плоскостей -----
- •12) Магнитное поле элемента тока. Закон Био-Савара-Лапласа.
- •13) Расчёт магнитного поля бесконечного прямого поля с помощью принципа суперпозиции.
- •14)Определение циркуляции вектора магнитной индукции
- •15) Теорема о циркуляции и её применение для расчёта магнитного поля бесконечного соленоида
- •16) Силы Ампера
- •17) Основные уравнения электромагнитного поля (уравнения Максвелла) для случая статических поле.
- •18) Основные уравнения электростатики. Потенциал. Связь между напряжённостью поля и потенциалом
- •19) Основные уравнения электростатики. Понятия эдс
- •20) Явления электромагнитной индукции. Закон Фарадея-ленца
- •21) Ток смещения
- •22) Уравнения Максвелла для переменных электромагнитных полей
- •По физической природе
- •По характеру взаимодействия с окружающей средой
- •2) Гармоническое колебание. Основные параметры
- •3) Дифференциальное уравнение гармонических колебаний. Понятие о гармоническом осцилляторе.
- •4) Свободные гармонические колебания пружинного маятника
- •Универсальное движение по окружности
- •Груз как простой маятник
- •5) Свободные гармонические колебания математического маятника
- •6) Свободные гармонические колебания физического маятника
- •7) Гармонические колебания в электромагнитном колебательном контуре
- •8) Свободное затухающее колебание. Дифференциальное уравнение и его решение
- •9) Свободное затухающее колебание пружинного маятника
- •10) Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент, добротность
- •11) Сложение коллинеарных гармонических колебаний равных частот
- •12) Сложение коллинеарных гармонических колебаний близких частот. Биение
- •13) Сложение ортогональных колебаний равных частот
6) Тангенциальное и нормальное линейные ускорения. Определение, значение, связь с угловыми переменными
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис.
1.10. Тангенциальное ускорение.
Направление
вектора тангенциального ускорения
τ
(см. рис. 1.10) совпадает с направлением
линейной скорости или противоположно
ему. То есть вектор тангенциального
ускорения лежит на одной оси с касательной
окружности, которая является траекторией
движения тела.
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.
7) Динамические параметры механических систем: масса, центр инерции, импульс. Связь между импульсом и скоростью центра инерции
Количественной
мерой инертности является масса тела.
Отношение масс взаимодействующих тел
равно обратному отношению модулей
ускорений. Второй закон Ньютона
устанавливает связь между кинематической
характеристикой движения – ускорением,
и динамическими характеристиками
взаимодействия – силами.
,
или, в более точном виде,
,
т.е. скорость изменения импульса
материальной точки равна действующей
на него силе. При одновременном действии
на одно тело нескольких сил тело движется
с ускорением, являющимся векторной
суммой ускорений, которые возникли бы
при воздействии каждой из этих сил в
отдельности.
По
второму закону Ньютона независимо от
того, находилось ли тело в покое или
двигалось, изменение его скорости может
происходить только при взаимодействии
с другими телам. Если на тело массой m
в течение времени t
действует сила F
и скорость его движения изменяется от
V0
доV,
то ускорение тела равно
.
На основании второго закона Ньютона
для силы F
можно записать
=>
.
Физическая величина, равная произведению
силы на время ее действия, называется
импульсом силы.
Из того, что тела независимо от своей массы падают с одинаковым ускорением, следует, что сила, действующая на них, пропорциональна массе тела. Эта сила притяжения, действующая на все тела со стороны Земли, называется силой тяжести. Сила тяжести действует на любом расстоянии между телами.
Вектор импульса системы точкой приложенной имеет так называемый центр масс. В произвольной системе отсчета центр масс данной системы задается радиус вектором определенным следующим образом:
ri
- радиус вектор I
– й материальной точки.
Продифференцируем левую и правую часть равенства по времени
|
Точка
с координатами Rc
называется центром
инерции
(или центром
масс)
системы из двух материальных точек. Из
уравнения (14)
следует, что, каким бы сложным ни казалось
движение каждой из масс, пpоизводная
dRc /dt = const.
Таким обpазом, центр инерции движется
с постоянной скоростью (независимо от
наличия колебательного и вращательного
движения системы). Обозначим эту скорость
как Vc:
Подставляя
сюда выражение для Rc
и дифференцируя, получаем
Эта формула определяет скорость центра инерции Vc через массы и скорости составляющих систему частиц. К движению именно этой точки относится первый закон Ньютона, и скорость этой точки надо считать скоростью движения системы как целого 1. Если мы согласимся на такое определение скорости движения системы как целого, то тогда импульс системы как целого должен быть равен произведению суммарной массы системы m1 + m2 на ее скорость Vc, то есть (m1+m2)Vc. С другой стороны,
Импульс
в замкнутых системах отсчетов остаются
неизменными