
- •2) Измерение интервалов времени и длины. Собственное время, собственная длина.
- •3) Виды механического движения. Модели в механике: модель материальной точки, абсолютно твёрдого тела, сплошной среды.
- •4) Кинематическое описание движения. Понятие степеней свободы. Уравнения движения моделей. Число степеней свободы моделей
- •5) Кинематические параметры поступательного и вращательного движений: линейные и угловые перемещения, скорости и ускорения
- •6) Тангенциальное и нормальное линейные ускорения. Определение, значение, связь с угловыми переменными
- •7) Динамические параметры механических систем: масса, центр инерции, импульс. Связь между импульсом и скоростью центра инерции
- •8) Динамические параметры механических систем: момент инерции. Теорема Штейнера.
- •13) Главные оси инерции. Свободные оси вращения. Устойчивые оси вращения.
- •14) Энергия как универсальная мера интенсивности движения. Полная энергия, энергия покоя. Кинетическая энергия в релятивистском случае.
- •15) Кинетическая энергия поступательного и вращательного движений.
- •16) Плоское движение. Кинетическая энергия тела, совершающего плоское движение.
- •17) Потенциальная энергия.
- •18) Сила как мера взаимодействия тел. Момент силы, работа и мощность силы
- •19) Связь между силой и потенциальной энергией. Работа потенциальных сил.
- •20) Законы сохранения в замкнутых системах и их связь со свойствами пространства и времени
- •21) Механическая энергия. Законы сохранения. Консервативные и не консеравтивные системы.
- •22) Законы движения в незамкнутых системах
- •23) Законы Ньютона и их современная трактовка. Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •24) Законы динамики вращательного движения
- •1. Момент силы.
- •2. Момент инерции тела.
- •2. Основной закон динамики вращательного движения.
- •3. Условия равновесия тел.
- •25) Плоское движение. Динамика движения твёрдого тела на примере маятника Максвела
- •26) Частные законы сохранения в незамкнутых системах.
- •1) Электромагнитное поле. Электрический заряд и его свойства.
- •2) Напряжённость электромагнитного поля
- •3) Сила Лоренца. Движение зарядов в электромагнитном поле.
- •4) Напряжённость поля не подвижного точечного заряда. Свойства поля
- •5) Электростатическое поле системы зарядов. Принцип суперпозиции. Поле электрического диполя
- •6) Определение потока вектора напряжённости электростатического поля.
- •7) Теорема Острограского-Гауса.
- •8) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной нити
- •9) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной плоскости
- •10) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной сферы
- •11) Поле бесконечного конденсатора или двух разноимённо заряженных плоскостей -----
- •12) Магнитное поле элемента тока. Закон Био-Савара-Лапласа.
- •13) Расчёт магнитного поля бесконечного прямого поля с помощью принципа суперпозиции.
- •14)Определение циркуляции вектора магнитной индукции
- •15) Теорема о циркуляции и её применение для расчёта магнитного поля бесконечного соленоида
- •16) Силы Ампера
- •17) Основные уравнения электромагнитного поля (уравнения Максвелла) для случая статических поле.
- •18) Основные уравнения электростатики. Потенциал. Связь между напряжённостью поля и потенциалом
- •19) Основные уравнения электростатики. Понятия эдс
- •20) Явления электромагнитной индукции. Закон Фарадея-ленца
- •21) Ток смещения
- •22) Уравнения Максвелла для переменных электромагнитных полей
- •По физической природе
- •По характеру взаимодействия с окружающей средой
- •2) Гармоническое колебание. Основные параметры
- •3) Дифференциальное уравнение гармонических колебаний. Понятие о гармоническом осцилляторе.
- •4) Свободные гармонические колебания пружинного маятника
- •Универсальное движение по окружности
- •Груз как простой маятник
- •5) Свободные гармонические колебания математического маятника
- •6) Свободные гармонические колебания физического маятника
- •7) Гармонические колебания в электромагнитном колебательном контуре
- •8) Свободное затухающее колебание. Дифференциальное уравнение и его решение
- •9) Свободное затухающее колебание пружинного маятника
- •10) Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент, добротность
- •11) Сложение коллинеарных гармонических колебаний равных частот
- •12) Сложение коллинеарных гармонических колебаний близких частот. Биение
- •13) Сложение ортогональных колебаний равных частот
13) Расчёт магнитного поля бесконечного прямого поля с помощью принципа суперпозиции.
. Закон Био–Савара. Теорема о циркуляции *)
Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:
Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.
Индукцию
проводника с током можно представить
как векторную сумму элементарных
индукций
создаваемых
отдельными участками проводника. На
опыте невозможно осуществить отдельный
участок проводника с током, так как
постоянные токи всегда замкнуты. Можно
измерить только суммарную индукцию
магнитного поля, создаваемого всеми
элементами тока. Закон Био–Савара
определяет вклад
в
магнитную индукцию
результирующего
магнитного поля, создаваемый малым
участком Δl проводника с током I.
|
|
|
Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 4.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:
|
|
|
которая уже приводилась в § 1.16.
|
Рисунок 4.17.1. Иллюстрация закона Био–Савара. |
Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле
|
|
|
где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Расчеты магнитного поля токов часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.
Поясним
понятие циркуляции вектора
Пусть
в пространстве, где создано магнитное
поле, выбран некоторый условный замкнутый
контур (не обязательно плоский) и указано
положительное направление обхода
контура. На каждом отдельном малом
участке Δl этого контура можно определить
касательную составляющую
вектора
в
данном месте, то есть определить проекцию
вектора
на
направление касательной к данному
участку контура (рис. 4.17.2).
|
Рисунок 4.17.2. Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле. |
Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:
|
|
|
Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.
Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:
|
|
|
В качестве примера на рис. 4.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L.
Теорема о циркуляции в данном примере выражается соотношением:
|
|
|
Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.
Простейшим
примером применения теоремы о циркуляции
является определение магнитной индукции
поля прямолинейного проводника с током.
Учитывая симметрию в данной задаче,
контур L целесообразно выбрать в виде
окружности некоторого радиуса R, лежащей
в перпендикулярной проводнику плоскости.
Центр окружности находится в некоторой
точке проводника. В силу симметрии
вектор
направлен
по касательной (
), а его модуль одинаков во всех точках
окружности. Применение теоремы о
циркуляции приводит к соотношению:
|
|
|
откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.
Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.
Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 4.17.3).
|
Рисунок 4.17.3. Применение теоремы о циркуляции к тороидальной катушке. |
Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 4.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 4.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:
|
B ∙ 2πr = μ0IN, |
|
где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,
|
|
|
Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае
|
|
|
В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.
На рис. 4.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри соленоида.
|
Рисунок 4.17.4. Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки. |
В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 4.17.5.
|
Рисунок 4.17.5. Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоида. |
Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен Inl. Согласно теореме о циркуляции,
|
Bl = μ0Inl, |
|
откуда
|
|
|
Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.