
- •2) Измерение интервалов времени и длины. Собственное время, собственная длина.
- •3) Виды механического движения. Модели в механике: модель материальной точки, абсолютно твёрдого тела, сплошной среды.
- •4) Кинематическое описание движения. Понятие степеней свободы. Уравнения движения моделей. Число степеней свободы моделей
- •5) Кинематические параметры поступательного и вращательного движений: линейные и угловые перемещения, скорости и ускорения
- •6) Тангенциальное и нормальное линейные ускорения. Определение, значение, связь с угловыми переменными
- •7) Динамические параметры механических систем: масса, центр инерции, импульс. Связь между импульсом и скоростью центра инерции
- •8) Динамические параметры механических систем: момент инерции. Теорема Штейнера.
- •13) Главные оси инерции. Свободные оси вращения. Устойчивые оси вращения.
- •14) Энергия как универсальная мера интенсивности движения. Полная энергия, энергия покоя. Кинетическая энергия в релятивистском случае.
- •15) Кинетическая энергия поступательного и вращательного движений.
- •16) Плоское движение. Кинетическая энергия тела, совершающего плоское движение.
- •17) Потенциальная энергия.
- •18) Сила как мера взаимодействия тел. Момент силы, работа и мощность силы
- •19) Связь между силой и потенциальной энергией. Работа потенциальных сил.
- •20) Законы сохранения в замкнутых системах и их связь со свойствами пространства и времени
- •21) Механическая энергия. Законы сохранения. Консервативные и не консеравтивные системы.
- •22) Законы движения в незамкнутых системах
- •23) Законы Ньютона и их современная трактовка. Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •24) Законы динамики вращательного движения
- •1. Момент силы.
- •2. Момент инерции тела.
- •2. Основной закон динамики вращательного движения.
- •3. Условия равновесия тел.
- •25) Плоское движение. Динамика движения твёрдого тела на примере маятника Максвела
- •26) Частные законы сохранения в незамкнутых системах.
- •1) Электромагнитное поле. Электрический заряд и его свойства.
- •2) Напряжённость электромагнитного поля
- •3) Сила Лоренца. Движение зарядов в электромагнитном поле.
- •4) Напряжённость поля не подвижного точечного заряда. Свойства поля
- •5) Электростатическое поле системы зарядов. Принцип суперпозиции. Поле электрического диполя
- •6) Определение потока вектора напряжённости электростатического поля.
- •7) Теорема Острограского-Гауса.
- •8) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной нити
- •9) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной плоскости
- •10) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной сферы
- •11) Поле бесконечного конденсатора или двух разноимённо заряженных плоскостей -----
- •12) Магнитное поле элемента тока. Закон Био-Савара-Лапласа.
- •13) Расчёт магнитного поля бесконечного прямого поля с помощью принципа суперпозиции.
- •14)Определение циркуляции вектора магнитной индукции
- •15) Теорема о циркуляции и её применение для расчёта магнитного поля бесконечного соленоида
- •16) Силы Ампера
- •17) Основные уравнения электромагнитного поля (уравнения Максвелла) для случая статических поле.
- •18) Основные уравнения электростатики. Потенциал. Связь между напряжённостью поля и потенциалом
- •19) Основные уравнения электростатики. Понятия эдс
- •20) Явления электромагнитной индукции. Закон Фарадея-ленца
- •21) Ток смещения
- •22) Уравнения Максвелла для переменных электромагнитных полей
- •По физической природе
- •По характеру взаимодействия с окружающей средой
- •2) Гармоническое колебание. Основные параметры
- •3) Дифференциальное уравнение гармонических колебаний. Понятие о гармоническом осцилляторе.
- •4) Свободные гармонические колебания пружинного маятника
- •Универсальное движение по окружности
- •Груз как простой маятник
- •5) Свободные гармонические колебания математического маятника
- •6) Свободные гармонические колебания физического маятника
- •7) Гармонические колебания в электромагнитном колебательном контуре
- •8) Свободное затухающее колебание. Дифференциальное уравнение и его решение
- •9) Свободное затухающее колебание пружинного маятника
- •10) Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент, добротность
- •11) Сложение коллинеарных гармонических колебаний равных частот
- •12) Сложение коллинеарных гармонических колебаний близких частот. Биение
- •13) Сложение ортогональных колебаний равных частот
8) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной нити
Рассмотрим поле, создаваемое бесконечной прямолинейной нитью с линейной плотностью заряда, равной λ. Пусть требуется определить напряжённость, создаваемую этим полем на расстоянии R от нити. Возьмём в качестве гауссовой поверхности цилиндр с осью, совпадающей с нитью, радиусом R и высотой Δl. Тогда поток напряжённости через эту поверхность по теореме Гаусса таков (в единицах СИ):
В силу симметрии
вектор напряженности поля направлен перпендикулярно нити, прямо от нее (или прямо к ней).
модуль этого вектора в любой точке поверхности цилиндра одинаков.
Тогда поток напряжённости через эту поверхность можно рассчитать следующим образом:
Учитывается
только площадь боковой поверхности
цилиндра, так как поток через основания
цилиндра равен нулю (вследствие
направления E
по касательной к ним). Приравнивая два
полученных выражения для
,
имеем:
(В системе СГС ответ: E = 2λ / R).
9) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной плоскости
Рассмотрим поле, создаваемое бесконечной однородно заряженной плоскостью с везде одинаковой поверхностной плотностью заряда σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к заряженной плоскости, и основаниями (площадью ΔS каждое), расположенными относительно плоскости симметрично (см. рисунок).
В силу симметрии:
Все векторы напряжённости поля (в том числе E' и E'') — перпендикулярны заряженной плоскости: действительно, в силу вращательной симметрии задачи, вектор напряжённости при любом повороте относительно оси, перпендикулярной плоскости, должен переходить в себя, а это возможно для ненулевого вектора только если он перпендикулярен плоскости. Из этого следует (кроме прочего), что поток напряжённости поля через боковую поверхность цилиндра равен нулю (так как поле направлено везде по касательной к этой поверхности).
E' = E'' = E.
Поток вектора напряжённости равен (в силу (1)) потоку только через основания цилиндра, а он, в силу того, что E' и E'' перпендикулярны этим основаниям и в силу (2), равен просто 2EΔS.
Применив теорему Гаусса, и учитывая Q = σΔS, получим (в системе СИ):
из чего
В системе СГСЭ все рассуждения полностью аналогичны (с точностью до постоянных коэффициентов), а ответ записывается как E = 2πσ.
10) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной сферы
Способ расчета с помощью теоремы Гаусса для любого сферически симметричного распределения заряда в целом сводится к тому, что описано выше для случая точечного заряда (см. параграф о законе Кулона).
Отметим тут только в отношении неточечных источников обладающих сферической симметрией вот что (всё это является очевидными следствиями применения описанного там метода):
Сферически симметричный заряд с концентрической сферической пустотой (или незаряженной областью) в середине, не создает внутри этой пустоты поля (напряженность поля там равна нулю).
Вообще поле на расстоянии r от центра создается только теми зарядами, которые находятся глубже к центру. Это поле можно рассчитать по закону Кулона: E = KQ / r2, только под Q здесь следует понимать суммарный заряд шаровой области радиусом r (а это означает, что зависимость от r в итоге отличается от кулоновской, поскольку с ростом r растет Q, по карйней мере пока r не больше радиуса всей заряженной области — если только она в свою очередь конечна).
При r, больших радиуса заряженной области (если он конечен), выполняется самый обычный закон Кулона (как для точечного заряда). Это объясняет, например, почему обычный закон Кулона работает для равномерно заряженных шаров, сфер, планет со структурой близкой к сферически симметричной даже вблизи их поверхности (например, почему вблизи поверхности Земли гравитационное поле достаточно близко к полю точечной массы, сосредоточенной в центре Земли).
В интересном частном случае равномерно заряженного шара, его электрическое (или гравитационное) поле оказывается внутри шара пропорциональным расстоянию до центра.