
- •2) Измерение интервалов времени и длины. Собственное время, собственная длина.
- •3) Виды механического движения. Модели в механике: модель материальной точки, абсолютно твёрдого тела, сплошной среды.
- •4) Кинематическое описание движения. Понятие степеней свободы. Уравнения движения моделей. Число степеней свободы моделей
- •5) Кинематические параметры поступательного и вращательного движений: линейные и угловые перемещения, скорости и ускорения
- •6) Тангенциальное и нормальное линейные ускорения. Определение, значение, связь с угловыми переменными
- •7) Динамические параметры механических систем: масса, центр инерции, импульс. Связь между импульсом и скоростью центра инерции
- •8) Динамические параметры механических систем: момент инерции. Теорема Штейнера.
- •13) Главные оси инерции. Свободные оси вращения. Устойчивые оси вращения.
- •14) Энергия как универсальная мера интенсивности движения. Полная энергия, энергия покоя. Кинетическая энергия в релятивистском случае.
- •15) Кинетическая энергия поступательного и вращательного движений.
- •16) Плоское движение. Кинетическая энергия тела, совершающего плоское движение.
- •17) Потенциальная энергия.
- •18) Сила как мера взаимодействия тел. Момент силы, работа и мощность силы
- •19) Связь между силой и потенциальной энергией. Работа потенциальных сил.
- •20) Законы сохранения в замкнутых системах и их связь со свойствами пространства и времени
- •21) Механическая энергия. Законы сохранения. Консервативные и не консеравтивные системы.
- •22) Законы движения в незамкнутых системах
- •23) Законы Ньютона и их современная трактовка. Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •24) Законы динамики вращательного движения
- •1. Момент силы.
- •2. Момент инерции тела.
- •2. Основной закон динамики вращательного движения.
- •3. Условия равновесия тел.
- •25) Плоское движение. Динамика движения твёрдого тела на примере маятника Максвела
- •26) Частные законы сохранения в незамкнутых системах.
- •1) Электромагнитное поле. Электрический заряд и его свойства.
- •2) Напряжённость электромагнитного поля
- •3) Сила Лоренца. Движение зарядов в электромагнитном поле.
- •4) Напряжённость поля не подвижного точечного заряда. Свойства поля
- •5) Электростатическое поле системы зарядов. Принцип суперпозиции. Поле электрического диполя
- •6) Определение потока вектора напряжённости электростатического поля.
- •7) Теорема Острограского-Гауса.
- •8) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной нити
- •9) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной плоскости
- •10) Теорема Остроградского-Гаусса и её применение для напряженности электрического поля однородно заряженной бесконечной сферы
- •11) Поле бесконечного конденсатора или двух разноимённо заряженных плоскостей -----
- •12) Магнитное поле элемента тока. Закон Био-Савара-Лапласа.
- •13) Расчёт магнитного поля бесконечного прямого поля с помощью принципа суперпозиции.
- •14)Определение циркуляции вектора магнитной индукции
- •15) Теорема о циркуляции и её применение для расчёта магнитного поля бесконечного соленоида
- •16) Силы Ампера
- •17) Основные уравнения электромагнитного поля (уравнения Максвелла) для случая статических поле.
- •18) Основные уравнения электростатики. Потенциал. Связь между напряжённостью поля и потенциалом
- •19) Основные уравнения электростатики. Понятия эдс
- •20) Явления электромагнитной индукции. Закон Фарадея-ленца
- •21) Ток смещения
- •22) Уравнения Максвелла для переменных электромагнитных полей
- •По физической природе
- •По характеру взаимодействия с окружающей средой
- •2) Гармоническое колебание. Основные параметры
- •3) Дифференциальное уравнение гармонических колебаний. Понятие о гармоническом осцилляторе.
- •4) Свободные гармонические колебания пружинного маятника
- •Универсальное движение по окружности
- •Груз как простой маятник
- •5) Свободные гармонические колебания математического маятника
- •6) Свободные гармонические колебания физического маятника
- •7) Гармонические колебания в электромагнитном колебательном контуре
- •8) Свободное затухающее колебание. Дифференциальное уравнение и его решение
- •9) Свободное затухающее колебание пружинного маятника
- •10) Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент, добротность
- •11) Сложение коллинеарных гармонических колебаний равных частот
- •12) Сложение коллинеарных гармонических колебаний близких частот. Биение
- •13) Сложение ортогональных колебаний равных частот
Историческая формулировка
Исходная формулировка Ньютона:
-
Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
Интересно, что если добавить требование инерциальной системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.
Третий закон Ньютона
Этот
закон объясняет, что происходит с двумя
взаимодействующими телами. Возьмём для
примера замкнутую систему, состоящую
из двух тел. Первое тело может действовать
на второе с некоторой силой
,
а второе — на первое с силой
.
Как соотносятся силы? Третий закон
Ньютона утверждает: сила действия равна
по модулю и противоположна по направлению
силе противодействия. Подчеркнём, что
эти силы приложены к разным телам, а
потому вовсе не компенсируются.
Современная формулировка
-
Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:
Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.
Историческая формулировка
-
Действию всегда есть равное и противоположное противодействие, иначе — взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.
Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость[1].
24) Законы динамики вращательного движения
1. Момент силы.
Вращающее
действие силы определяется ее моментом.
Моментом
силы
относительно
какой-либо точки
называется
векторное произведение
,
(40)
-
радиус-вектор, проведенный из точки
в
точку приложения силы (рис.5). Единица
измерения момента силы
.
Величина момента силы
,
или можно записать
,
(41)
где
-
плечо силы ( кратчайшее расстояние от
точки
до
линии действия силы).
Рис.5.
Момент
силы относительно какой-либо точки
равен нулю, если линия действия силы
проходит через эту точку.Проекция
вектора
на
какую-либо ось, например, ось z, называется
моментом
силы
относительно
этой оси. Чтобы определить момент силы
относительно
оси, сначала проецируют силу на плоскость,
перпендикулярную оси (рис.6), а затем
находят момент этой проекции относительно
точки пересечения оси с перпендикулярной
ей плоскостью. Если линия действия силы
параллельна оси, или пересекает ее, то
момент силы относительно этой оси равен
нулю.
Рис.6.
2. Момент инерции тела.
Моментом
инерции
тела
относительно какой-либо оси z
называется сумма произведений масс
точек этого тела на квадраты расстояний
от этих точек до оси
,
(42)
-
масса
-той
точки ,
-
кратчайшее расстояние от
-той
точки до оси z.
Для сплошных тел момент инерции определяется через интеграл
,
(43)
-
расстояние от элемента
массы
тела до оси z.
Моменты инерции однородных тел простой геометрической формы обычно рассчитывают по формуле (43), а сложной определяют экспериментально. В таблице 1 приведены моменты инерции некоторых тел.
Теорема
Штейнера.
Если для какого-либо тела известен его
момент инерции
относительно
оси
,
проходящей через центр масс
тела,
то момент инерции этого тела относительно
оси
,
параллельной
,
равен
,
(44)
-
масса тела,
-
кратчайшее расстояние между осями
и
.