Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора ЕММ 2003.doc
Скачиваний:
6
Добавлен:
18.04.2019
Размер:
1.95 Mб
Скачать

28. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.

Будь-яка задача стає нелінійною, якщо в математич­ній моделі необхідно враховувати умови невизначеності та ризик. Як показник ризику часто використовують дисперсію, тому для врахування обмеженості ризику потрібно вводити нелінійну функцію в систему обмежень, а мінімізація ризику певного процесу досягається дослідженням математичної моделі з нелінійною цільовою функцією.

Загальна задача математичного програмування формулюється так: знайти такі значення змінних xj , щоб цільова функція набувала екстремального (максимального чи мінімального) значення:

за умов: ( ); .

Якщо всі функції та , є лінійними, то це задача лінійного програмування, інакше (якщо хоча б одна з функцій є нелінійною) маємо задачу нелінійного програмування.

Геометрично цільова функція визначає деяку поверхню, а обмеження— допустиму підмножину n-вимірного евклідового простору. Знаходження оптимального розв’язку задачі нелінійного програмування зводиться до відшукання точки з допустимої підмножини, в якій досягається поверхня найвищого (найнижчого) рівня.

Якщо цільова функція неперервна, а допустима множина розв’язків замкнена, непуста і обмежена, то глобальний максимум (мінімум) задачі існує.

Найпростішими для розв’язування є задачі нелінійного програмування, що містять систему лінійних обмежень та нелінійну цільову функцію. В цьому разі область допустимих розв’язків є опуклою, непустою, замкненою, тобто обмеженою.

29. Графічний метод розв’язування задач нелінійного програмування.

Алгоритм графічного методу розв’язування задачі нелінійного програмування складається з таких кроків:

1. Будуємо прямі, рівняння яких дістаємо заміною в обмеженнях задачі знаків нерівностей на знаки рівностей.

2. Визначаємо півплощини, що відповідають кожному обмеженню задачі.

3. Знаходимо багатокутник розв’язків задачі лінійного програмування.

4. Будуємо вектор , що задає напрям зростання значення цільової функції задачі.

5. Будуємо пряму с1хс2х2 = const, перпендикулярну до вектора .

6. Рухаючи пряму с1хс2х2 = const в напрямку вектора (для задачі максимізації) або в протилежному напрямі (для задачі мінімізації), знаходимо вершину багатокутника розв’язків, де цільова функція набирає екстремального значення.

7. Визначаємо координати точки, в якій цільова функція набирає максимального (мінімального) значення, і обчислюємо екстремальне значення цільової функції в цій точці.

30. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.

Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції. Отже, завдяки такому перетворенню можливе застосування методів класичного знаходження екстремуму функції кількох змінних.

Розглянемо метод множників Лагранжа на прикладі такої задачі нелінійного програмування:

Z =f (х1, х2... хп) —> mах (min) за умов

q1(x1,x2,…xn)=bi,i=1, де функція f (х1, x2, ..., хп) i q1(x1, x2, …xn) диференційовані.

Ідея методу множників Лагранжа полягає в заміні даної задачі простішою: на знаходження екстремуму складнішої функції, але без обмежень. Ця функція називається функцією Лагранжа і подається у вигляді

де λi— не визначені поки що величини, так звані множники Лагранжа.

Знайшовши частинні похідні функції L за всіма змінними і прирівнявши їх до нуля:

запишемо систему

що є, як правило, нелінійною.

Розв'язавши цю систему, знайдемо X* =(х1, x2, ..., хп) i λ0= (λ1, λ 2, ..., λm) — стаціонарні точки. Оскільки їх визначено з необхідної умови екстремуму, то в них можливий максимум або мінімум. Іноді стаціонарна.

Теорема. Нехай маємо стаціонарну точку ( ) функція Лангранжа, тобто точку в якій виконуються необхідні умови існування тоді точка :

1. Точка є точкою максимуму, якщо, починаючи з голов­ного мінору порядку (m + 1), наступні (nm) головних мінорів матриці Н утворюють знакозмінний числовий ряд, знак першого члена якого визначається множником .

2. Точка є точкою мінімуму, якщо, починаючи з головного мінору порядку (m + 1), знак наступних (nm) головних мінорів матриці Н визначається множником .

У теорії дослідження функцій задача на відшукання екстремальних значень не містить ніяких додаткових умов щодо змінних і такі задачі належать до задач відшукання безумовного екстремуму функції. Локальний та глобальний екстремуми тоді визначаються з необхідних та достатніх умов існування екстремуму функції.

Нагадаємо, що необхідна умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб точ­ка була точкою локального екстремуму, необхідно, щоб функція була неперервною і диференційовною в околі цієї точки і перші частинні похідні за змінними та у цій точ­ці дорівнювали нулю: .Точка називається критичною.

Якщо задача полягає у відшуканні локального чи глобального екстремуму деякої функції за умови, що на змінні такої функції накладаються додаткові обмеження, то маємо задачу пошуку умовного екстремуму функції. Термін «умовний» означає, що змінні задачі мають задовольняти деякі умови.

Найпростіший спосіб розв’язання задачі такого виду полягає в тому, що спочатку з обмеження знаходять вираз однієї змінної через іншу. Приміром, визначають через . Отриманий вираз виду підставляють у функцію що після цього стає функцією однієї змінної , і далі знаходять її безумовний екстремум.

Якщо деяка точка є точкою екстремуму функції , то точка є точкою умовного екстремуму

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]