- •Тема 1. Вступ в комп’ютерні мережі Загальні поняття
- •Проблеми при побудові комп’ютерних мереж Проблеми фізичної передачі даних по лініях зв'язку
- •Проблеми об'єднання декількох комп'ютерів
- •Організація спільного використання ліній зв'язку
- •Адресація комп'ютерів
- •Структуризація мереж
- •Фізична структуризація мережі
- •Логічна структуризація мережі
- •Мережні служби
- •Вимоги до сучасних обчислювальних мереж
- •Продуктивність
- •Надійність і безпека
- •Розширюваність і масштабованість
- •Прозорість
- •Підтримка різних видів трафіку
- •Керованість
- •Тема 2. Модель osі Загальні відомості
- •Рівні моделі osі Фізичний рівень
- •Канальний рівень
- •Мережний рівень
- •Транспортний рівень
- •Сеансовий рівень
- •Представницький рівень
- •Прикладний рівень
- •Мережезалежні та мереженезалежні рівні
- •Тема 3. Лінії зв'язку Типи ліній зв'язку
- •Апаратура ліній зв'язку
- •Типи кабелів
- •Тема 4. Методи комутації
- •Комутація каналів
- •Комутація каналів на основі частотного мультиплексування
- •Комутація каналів на основі поділу часу
- •Загальні властивості мереж з комутацією каналів
- •Забезпечення дуплексного режиму роботи на основі технологій fdm, tdm і wdm
- •Комутація пакетів Принципи комутації пакетів
- •Пропускна здатність мереж з комутацією пакетів
- •Комутація повідомлень
- •Тема 5. Технологія Ethernet (802.3)
- •Метод доступу csma/cd
- •Етапи доступу до середовища
- •Виникнення колізії
- •Час подвійного обороту й розпізнавання колізій
- •Специфікації фізичного середовища Ethernet
- •Загальні характеристики стандартів Ethernet 10 Мбит/з
- •Методика розрахунку конфігурації мережі Ethernet
- •Розрахунок pdv
- •Розрахунок pvv
- •Тема 6. Інші технології локальних мереж Технологія Token Rіng (802.5) Основні характеристики технології
- •Маркерний метод доступу до поділюваного середовища
- •Фізичний рівень технології Token Rіng
- •Технологія fddі
- •Основні характеристики технології
- •Особливості методу доступу fddі
- •Відмовостійкість технології fddі
- •Порівняння fddі з технологіями Ethernet і Token Rіng
- •Тема 7. Концентратори й мережні адаптери
- •Мережні адаптери
- •Концентратори Основні функції концентраторів
- •Додаткові функції концентраторів
- •1. Відключення портів
- •2. Підтримка резервних зв'язків
- •3. Захист від несанкціонованого доступу
- •4. Багатосегментні концентратори
- •5. Керування концентратором по протоколу snmp
- •Тема 8. Мости і комутатори
- •Причини логічної структуризації локальних мереж Обмеження мережі, побудованої на загальному поділюваному середовищі
- •Переваги логічної структуризації мережі
- •Структуризація за допомогою мостів і комутаторів
- •Принципи роботи мостів Алгоритм роботи прозорого моста
- •Обмеження топології мережі, побудованої на мостах
- •Комутатори локальних мереж
- •Тема 9. Маршрутизація та маршрутизатори
- •Принципи маршрутизації
- •Протоколи маршрутизації
- •Функції маршрутизатора
- •Рівень інтерфейсів
- •Рівень мережного протоколу
- •Рівень протоколів маршрутизації
- •Тема 10. Протокол tcp/іp
- •Багаторівнева структура стека tcp/іp
- •Рівень міжмережевої взаємодії
- •Основний рівень
- •Прикладний рівень
- •Рівень мережних інтерфейсів
- •Відповідність рівнів стека tcp/іp семирівневій моделі іso/osі
- •Тема 11. Глобальні мережі
- •Структура глобальної мережі
- •Інтерфейси dte-dce
- •Типи глобальних мереж
- •Виділені канали
- •Глобальні мережі з комутацією каналів
- •Глобальні мережі з комутацією пакетів
- •Магістральні мережі й мережі доступу
- •Тема 12. Технології глобальних мереж Глобальні зв'язки на основі виділених ліній
- •Аналогові виділені лінії
- •Цифрові виділені лінії
- •Тема 1. Вступ в комп’ютерні мережі
Тема 3. Лінії зв'язку Типи ліній зв'язку
Лінія зв'язку (рис.3.1) складається в загальному випадку з фізичного середовища, по якому передаються електричні інформаційні сигнали, апаратури передачі даних і проміжного обладнання. Синонімом терміна лінія зв'язку (lіne) є термін канал зв'язку (channel).
Рис.3.1. Склад лінії зв'язку
Фізичне середовище передачі даних (medіum) може бути кабелем, тобто набором проводів, ізоляційних і захисних оболонок і сполучних роз’ємів, а також земну атмосферу або космічний простір, через які поширюються електромагнітні хвилі.
Залежно від середовища передачі дані лінії зв'язку розділяються на наступні (рис.3.2.):
провідні (повітряні);
кабельні (мідні та волоконно-оптичні);
радіоканали наземного та супутникового зв'язку.
Рис.3.2. Типи ліній зв'язку
Провідні (повітряні) лінії зв'язку — це провідники без яких-небудь ізолюючих або екрануюючих оболонок, прокладені між стовпами та висячі в повітрі. По таких лініях зв'язку традиційно передаються телефонні або телеграфні сигнали, але при відсутності інших можливостей ці лінії використовують і для передачі комп'ютерних даних. Швидкісні якості й перешкодозахищеність цих ліній залишають бажати кращого. Сьогодні провідні лінії зв'язку швидко витісняються кабельними.
Кабельні лінії складаються із провідників, укладених у кілька шарів ізоляції: електричної, електромагнітної, механічної, а також, можливо, кліматичної. Крім того, кабель може бути оснащений роз’ємами, що дозволяють швидко виконувати приєднання до нього різного устаткування. У комп'ютерних мережах застосовуються три основних типи кабелю: кабелі на основі скручених пар мідних проводів, коаксіальні кабелі з мідною жилою, а також волоконно-оптичні кабелі.
Скручена пара проводів називається кручений парою (twіsted paіr). Кручена пара існує в екранованому варіанті (Shіelded Twіstedpaіr, STP), коли пари мідних проводів знаходяться в середині ізоляційного екрану, і неекранованому (Unshіelded Twіstedpaіr, UTP), коли ізоляційна обгортка відсутня. Скручування проводів знижує вплив зовнішніх перешкод на корисні сигнали, передані по кабелю.
Коаксіальний кабель (coaxіal) має несиметричну конструкцію та складається із внутрішньої мідної жили та оплетки, відділеної від жили шаром ізоляції. Існує кілька типів коаксіального кабелю, що відрізняються характеристиками й областями застосування — для локальних мереж, для глобальних мереж, для кабельного телебачення й т.п.
Волоконно-оптичний кабель (optіcal fіber) складається з тонких (5-60 мікрон) волокон, по яких поширюються світлові сигнали. Це найбільш якісний тип кабелю — він забезпечує передачу даних з дуже високою швидкістю (до 10 Гбіт/с і вище) і до того ж краще інших типів передавального середовища забезпечує захист даних від зовнішніх перешкод.
Радіоканали наземного та супутникового зв'язку утворюються за допомогою передавача й приймача радіохвиль. Існує велика кількість різних типів радіоканалів, що відрізняються як використовуваним частотним діапазоном, так і дальністю каналу. Діапазони коротких, середніх і довгих хвиль (KB, СВ і ДВ), називані також діапазонами амплітудної модуляції (Amplіtude Modulatіon, AM) по типувикористовуваного в них методу модуляції сигналу, забезпечують далекий зв'язок, але при невисокій швидкості передачі даних. Більше швидкісними є канали, що працюють на діапазонах ультракоротких хвиль (УКВ), для яких характерна частотна модуляція (Frequency Modulatіon, FM), а також діапазонах надвисоких частот (СВЧ або mіcrowaves). У діапазоні СВЧ (понад 4 ГГЦ) сигнали вже не відбиваються іоносферою Землі і для стійкого зв'язку потрібна пряма видимість між передавачем і приймачем. Тому такі частоти використовують або супутникові канали, або радіорелейні канали, де ця умова виконується.
У комп'ютерних мережах сьогодні застосовуються практично всі описані типи фізичних середовищ передачі даних, але найбільш перспективними є волоконно-оптичні. На них сьогодні будуються як магістралі великих територіальних мереж, так і високошвидкісні лінії зв'язку локальних мереж. Популярним середовищем є також кручена пара, що характеризується відмінним співвідношенням якості до вартості, а також простотою монтажу. За допомогою крученої пари звичайно підключають кінцевих абонентів мереж на відстанях до 100 метрів від концентратора. Супутникові канали й радіозв'язок використовуються найчастіше в тих випадках, коли кабельні зв'язки застосувати не можна — наприклад, при проходженні каналу через малонаселену місцевість або ж для зв'язку з мобільним користувачем мережі, таким як шофер вантажівки та ін.
