
- •3.Криволинейное движение.
- •6. Внешние и внутренние силы.
- •7. Связь между импульсом тела и импульсом силы.
- •8. Центр масс. Закон движения центра масс.
- •9. Степени свободы твёрдого тела.
- •10. Момент силы, момент импульса.
- •11.Уравнение динамики тела, вращающегося относительно неподвижной оси
- •12. Момент инерции мат. Точки.
- •13. Теорема Штейнера.
- •14. Работа силы.
- •15. Потенциальная сила и её работа.
- •16. Работа внешних и внутренних сил.
- •17. Кинетическая энергия.
- •18. Потенциальная энергия.
- •19. Законы сохранения в механике и их связь со свойствами пространства и времени.
- •20. Абсолютно упругий удар.
- •21. Абсолютно неупругий удар.
- •22. Гидростатическое давление
- •23. Уравнение неразрывности
- •24. Уравнение Берноули
- •25. Вязкость жидкостей
- •26. Ламинарный и турбулентный режим течения жидкостей.
- •27. Скорость и ускорение мат.Точки при движении относительно неинерциальной системы отсчёта.
- •28. Основное уравнение динамики относительного движения. Силы инерции.
- •29.Преобразования Галилея. Принцип относительности Галилея.
- •30. Постулаты сто.
- •31.Преобразования Лоренца.
- •32. Однородность длин и промежутков времени.
- •33.Пространственно-временной интервал.
- •34. Основное уравнение релятивистской механики.
- •35.Масса и энергия в сто.
- •36. Статистический и термодинамический метод исследования макросистем.
- •37.Термодинамические системы.
- •38. Термодинамические процессы.
- •39. Термодинамические параметры.
- •40. Идеальный газ и его законы.
- •41. Основное уравнение кинетической теории газов.
- •42. Уравнение кинетической теории для давления идеального газа.
- •43. Средняя квадратичная скорость.
- •44. Закон равномерного распределения энергии по степеням свободы
- •45. Классическая теория теплоёмкости идеального газа.
- •46. Распределение Максвелла.
- •47. Барометрическая формула.
- •48. Зависимость концентрации газа от высоты.
- •49. Среднее число столкновений и средняя длина свободного пробега молекул.
- •50. Явление теплопроводности.
- •53.Вакуум и его свойства.
- •54. Способы обмена энергии между системой и внешней средой.
- •55. Первое начало термодинамики.
- •56.Применение первого начала к изопроцессам.
- •58. Политропный процесс.
- •59. Круговой процесс.
- •60. Цикл Карно
- •Смысл формулы Больцмана
36. Статистический и термодинамический метод исследования макросистем.
Статистический метод исследования макросистем основан на использовании теории вероятности и определённых моделей строения вещества.
Термодинамический метод исследования макросистем основан на анализе условий при различных превращениях происходящих в системе.
Термодинамика - раздел физики в котором физические свойства макроскопических систем изучаются с помощью термодинамического метода.
37.Термодинамические системы.
Термодинамические системы - совокупности физических тел, которые могут взаимодействовать энергетически между собой и с другими телами, а также обмениваться с ними веществом В современной физике существует следующая классификация термодинамических систем по признаку их возможности обмена энергией и веществом с окружающей средой или с другими системами: а) Система открытая, если возможен обмен энергией и веществом. б) Система закрытая, если обмен энергией возможен, а обмен веществом невозможен. Закрытые системы дополнительно подразделяются по признаку возможности осуществления энергообмена следующим образом: а) Система замкнутая, если энергообмен возможен, но невозможен обмен с внешней средой путем совершения механической работы. б) Система изолированная, если невозможен обмен системы с окружающей средой ни энергией, ни веществом. в) Система адиабатная, если полностью отсутствует теплообмен системы с окружающей средой. В адиабатной системе возможен как обратимый, так и необратимый адиабатный процесс. Обратимый адиабатный процесс называется также изоэнтропийным процессом, что подчеркивает постоянство энтропии в адиабатной системе. А постоянство энтропии означает отсутствие необратимых диссипативных потерь энергии.
38. Термодинамические процессы.
Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров.
Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы.
Система, в которой идёт тепловой процесс, называется рабочим телом.
Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями.
Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.
Можно выделить несколько простых, но широко распространённых на практике, тепловых процессов:
Адиабатный процесс — происходящий без теплообмена с окружающей средой;
Изохорный процесс — происходящий при постоянном объёме;
Изобарный процесс — происходящий при постоянном давлении;
Изотермический процесс — происходящий при постоянной температуре;
Изоэнтропийный процесс — происходящий при постоянной энтропии;
Изоэнтальпийный процесс — происходящий при постоянной энтальпии;
Политропный процесс — происходящий при постоянной теплоёмкости;
В технике важны круговые процессы (циклы), то есть повторяющиеся процессы, например, цикл Карно, цикл Ренкина.
Теория тепловых процессов применяется для проектирования двигателей, холодильных установок, в химической промышленности, в метеорологии.