
- •1. Вредные примеси в нефти
- •2. Обезвоживание и обессоливание нефти
- •3. Общая характеристика оборудования электрообессоливающих установок
- •4. Основная схема атмосферной перегонки нефти
- •5. Основная схема вакуумной перегонки мазута
- •6. Общая характеристика аппаратов первичной переработки нефти
- •7. Термодинамика термических превращений соединений нефти
- •8. Кинетика и механизм термических превращений соединений нефти
- •9. Термический крекинг. Режим процесса. Принципиальная схема. Характеристика продукции.
- •10. Пиролиз. Режим процесса. Принципиальная схема. Характеристика продукции.
- •11. Замедленное и термоконтактное коксование. Режим процесса. Принципиальная схема. Характеристика продукции. Замедленное коксование
- •Термоконтактное коксование
- •12. Висбрекинг нефтяных остатков. Режим процесса. Принципиальная схема. Характеристика продукции.
- •13. Назначение процесса каталитического крекинга. Качество продуктов и их использование.
- •Качество продуктов кк и их использование
- •14. Требования к промышленным катализаторам кк. Активность, селективность и стабильность катализаторов.
- •15. Механизм действия катализаторов окислительно-восстановительного типа.
- •16. Кислотный катализ
- •17. Каталитический крекинг. Химические основы процесса. Превращения алканов, циклоалканов, алкенов и аренов.
- •Химические основы процесса
- •Каталитический крекинг алканов
- •Каталитический крекинг циклоалканов
- •Каталитический крекинг алкенов
- •Каталитический крекинг алкилароматических углеводородов
- •18. Каталитический крекинг. Принципиальная технологическая схема. Режим процесса.
- •19. Каталитический риформинг. Химические основы процесса. Превращения алканов, циклоалканов.
- •20. Каталитический риформинг. Влияние гетероатомных соединений и металлов, коксообразование на катализаторах.
- •21. Каталитический риформинг в промышленности. Катализаторы процесса.
- •22. Классификация гидрогенизационных процессов в нефтепереработке.
- •23. Химические основы гидрогенизационных процессов.
- •24. Гидрогенизационные процессы. Превращения сероорганических, азотсодержащих, кислородсодержащих и металлоорганических соединений.
- •25. Гидрогенизационные процессы. Превращения ув. Катализаторы процесса.
- •26. Гидроочистка в промышленности.
- •27. Гидрокрекинг. Химические основы процесса.
- •28. Гидрокрекинг. Превращение алканов, циклоалканов, алкенов, аренов. Гидрокрекинг в промышленности.
- •29. Характеристика нефтяных газов. Очистка и осушка газов.
- •30. Разделение газов
- •31. Алкилирование. Изомеризация. Полимеризация алкенов.
Каталитический крекинг алканов
Первичным актом при крекинге алканов является образование карбкатиона (инициирование процесса) Для твердых кислотных катализаторов (цеолитов) предложены следующие гипотезы инициирования процесса:
-карбениевый ион образуется при отрыве гидрид-иона сильным кислотным центром Бренстеда с образованием в качестве продукта водорода;
-исходный нон представляет собой пентакоординированный углерод (карбониевый ион), образующийся присоединением протона, отрываемого от сильного центра Бренстеда;
-карбениевый ион образуется благодаря адсорбции па центрах Бренстеда олефинов, полученных при термическом крекинге исходного вещества;
-карбкатион образуется при поляризации молекулы сырья под воздействием сильных электрических полей в порах цеолита.
Наиболее принята гипотеза, основанная на образовании карбениевых ионов из олефинов, образующихся при термическом распаде в газовой фазе, на кислотных центрах Бренстеда Образующиеся олефины присоединяют протоны, находящиеся на катализаторе (центры Бренстеда) и превращаются в карбкатионы:
Образовавшийся ион карбения отрывает гидрид-ион от молекулы исходного алкана:
Далее реакция развивается по цепному пути. Образовавшийся ион карбения подвергается β-распаду с образованием небольших карбкатионов и газообразных α‑олефинов. При этом одновременно протекают реакции изомеризации карбениевых ионов.
Изомеризация происходит как путем перемещения гидрид-иона (изомеризация заряда), так и при перемещении метиланиона (скелетная изомеризация). Тепло, выделяющееся при изомеризации, затрачивается на расщепление. Превращение протекает по схеме:
Высокая скорость изомеризации ионов приводит к тому, что этилена - продукта распада первичного карбкатиона образуется очень мало.
Скелетная изомеризация дает продукты с разветвлением углеводородного скелета:
Чередование экзотермической изомеризации и эндотермического β-распада продолжается до образования карбкатионов, содержащих 3-5 атомов водорода. Тепловой эффект измеризации этих ионов уже не компенсирует затрат тепла на расщепление. Поэтому карбкатионы С3-С5 после изомеризации отрывают гидрид-ион от молекулы исходного углеводорода:
Затем весь цикл процесса повторяется. Обрыв цепи происходит при встрече карбкатиона с анионом катализатора:
Первая стадия - отрыв гидрид-иона от алкана - протекает быстрее в том случае, если гидрид-ион отрывается от третичного углеродного атома. Поэтому скорость крекинга разветвленных алканов выше, чем нормальных. Вместе с тем, и распад ионов наиболее легко идет с отщеплением третичных карбкатионов, в результате чего в продуктах распада нормальных алканов с числом атомов углерода четыре И более преобладают изоструктуры.
Скорость каталитического крекинга алканов на один-два порядка выше скорости их термического крекинга.
Каталитический крекинг циклоалканов
Скорость каталитического крекинга циклоалканов близка к скорости крекинга алканов с равным числом атомов углерода и увеличивается при наличии третичного атома углерода.
Стадия инициирования - возникновения карбкатионов - для насыщенных алканов и циклоалканов протекает одинаково. За счет термического крекинга возникает небольшое количество алкенов, которые, присоединяя протон от катализатора, превращаются к карбкатионы.
Образовавшиеся ионы карбения отрывают гидрид-ионы от молекулы циклоалкана. Отщепление гидрид-иона от третичного углеродною атома протекает легче, чем от вторичного, поэтому глубина крекинга возрастает с увеличением числа заместителей в кольце
Распад циклогексильного иона может происходить двумя путями: 1) с разрывом кольца и 2) без разрыва кольца.
При разрыве β-С-С-связи образуется алкенильный ион, который легко изомеризуется в ион аллильного типа:
Последний может расщепиться по β-правилу, оторвать гидрид-ион от исходного углеводорода или передать протон молекуле алкена или катализатора
При крекинге по этому пути из гомологов циклогексана образуются алкены и диены.
2) Циклогексильный ион может передать протон алкену или катализатору и превратиться в циклоалкен
Этот путь энергетически выгоднее, чем распад по С-С-связи (1).
Циклоалкены крекируются быстрее, чем циклоалканы, со значительным выходом аренов.
Выход аренов достигает 25% и более от продуктов превращения циклогексанов, а газы крекинга циклоалкенов содержат повышенное по сравнению с газами крекинга алканов количество водорода.
Наблюдается также изомеризация циклогексанов в циклопентаны и обратно
Циклопентаны в условиях каталитического крекинга более устойчивы, чем циклогексаны. При наличии длинных боковых цепей в молекуле циклоалкана возможны изомеризация боковой цепи и деалкилирование молекулы.
Бициклические циклоалканы ароматизируются в большей степени, чем моноциклические. Так, при каталитическом крекинге декалина (500°С) выход аренов составляет ≈33% на превращенный декалин. Еще больше ароматических соединений (87,6%) образуется при крекинге в тех же условиях тетралина.