Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_k_ekzamenu_po_himii.doc
Скачиваний:
91
Добавлен:
17.04.2019
Размер:
7.21 Mб
Скачать

19. Каталитический риформинг. Химические основы процесса. Превращения алканов, циклоалканов.

Целевыми в процессах каталитического риформинга являются реакции образования аренов за счет:

дегидрирования шестичленных цикланов

дегидроизомеризация циклопентанов

дегидроциклизации алканов

В процессе параллельно протекают и нежелательные реакции гидрокрекинга с образованием как низко-, так и высокомолекулярных углеводородов, а также продуктов уплотнения - кокса, откладывающегося на поверхности катализаторов.

Наиболее важные реакции риформинга, ведущие к образованию аренов из цикланов и алканов, идут с поглощением тепла, у реакций изомеризации тепловой эффект, близкий к 0, а реакции гидрокрекинга экзотермичны.

В условиях каталитического риформинга наиболее легко и быстро протекают реакции дегидрирования гомологов циклогексана. Относительно этой реакции скорость ароматизации из 5-членных цикланов примерно на порядок ниже. Наиболее медленной из реакций ароматизации является дегидроциклизация алканов, скорость которой лимитируется наиболее медленной стадией циклизации (на 2 порядка ниже).

Относительные скорости и тепловые эффекты реакций каталитического риформинга

Типы реакций

Относительная скорость

Δ, кДж/моль

С6

С7

Дегидрирование циклогексана

100

120

- 221

Изомеризация алканов

10

13

+ 4,6

Изомеризация циклопентанов

10

13

+ 15,6

Гидрокрекинг циклоалканов

5

3

+ 43,9

Гидрокрекинг алканов

3

4

+ 56,4 (на 1 моль Н2)

Дегидроциклизация алканов

1

4

- 260

Превращения цикланов и алканов в арены - обратимые реакции, протекающие с увеличением объема и поглощением тепла. Следовательно, по правилу Ле-Шателье, равновесная глубина ароматизации увеличивается с ростом температуры и понижением парциального давления водорода. Однако промышленные процессы каталитического риформинга вынужденно осуществляют либо при повышенных давлениях с целью подавления реакций коксообразования (при этом снижение равновесной глубины ароматизации компенсируют повышением температуры), либо с непрерывной регенерацией катализатоpa при пониженных давлениях.

20. Каталитический риформинг. Влияние гетероатомных соединений и металлов, коксообразование на катализаторах.

Соединения, содержащие гетероатомы N, S, О и металлы (Pb, As, Сu). Эти соединения необратимо сорбируются на платиновом катализаторе и быстро отравляют его. Поэтому присутствие гетероатомных соединений в сырье риформинга нежелательно: содержание серы должно быть не более 1 мг/кг; азота—до 0,5 мг/кг; концентрация Pb, As, Сu не должна превышать нескольких миллиграммов на тонну. Для удаления гетероорганических и металлорганических соединений сырье риформинга предварительно подвергают гидроочистке.

Коксообразование на катализаторе. Закоксовывание катализатора снижает его активность. Механизм образования кокса изучен недостаточно. На платине при умеренных температурах (<427°С) кокс образуется, по-видимому, в результате диссоциативной адсорбции углеводородов. Поверхностные соединения обеднены водородом, прочно удерживаются на поверхности и находятся в квазиравновесии с газофазным водородом. При более высокой температуре (>477°С) и атмосферном давлении происходит диссоциация связей С—С, и на поверхности металла образуется углерод. Возможность образования углерода на катализаторе в нормальных условиях риформинга не очевидна, так как процесс осуществляется под давлением водорода. Однако существование поверхностных соединений в реальных условиях риформинга доказано экспериментально.

Модифицированный оксид алюминия по характеру действия аналогичен алюмосиликатному катализатору каталитического крекинга, хотя и обнаруживает меньшую активность. Коксообразование на кислотных центрах катализатора риформинга, как и при крекинге, протекает за счет полимеризации, перераспределения водорода, циклизации, конденсации и других реакций непредельных и ароматических соединений. Образовавшийся кокс состоит из полициклических ароматических колец, связанных с алкеновыми и циклоалкановыми фрагментами. При всех отличиях механизма коксообразования на платине и оксиде алюминия действие их взаимосвязано: ненасыщенные углеводороды, образующиеся на платине, служат источником кокса на Аl2O3. Углеродистые отложения с платины могут мигрировать на Аl2O3. С другой стороны, продукты уплотнения, в частности полициклические арены, образующиеся на кислотных центрах, достаточно подвижны и могут блокировать металлические центры катализатора. Таким образом, на коксообразование влияют обе функции катализатора. Степень дезактивации катализатора зависит от закоксованности как платины, так и Аl2O3, так как важнейшие реакции риформинга протекают по бифункциональному механизму.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]