
- •Оглавление
- •Глава 1. Основы системного анализа 4
- •Глава 2. Основы оценки сложных систем 34
- •Глава 3. Примеры концептуальных моделей и методик оценивания систем 75
- •Глава 4. Основы управления 89
- •Глава 5. Математический инструментарий в управлении проектами с учётом рисков 127
- •Основы системного анализа
- •1.1. Сущность автоматизации управления в сложных системах
- •1.1.1. Структура системы с управлением
- •1.1.2. Пути совершенствования систем с управлением
- •1.1.3. Цель автоматизации управления
- •1.2. Основные понятия системного анализа
- •1.2.1. Задачи системного анализа
- •1.2.2. Понятие системы как семантической модели
- •1.2.3. Классификация систем
- •1.2.4. Основные определения системного анализа
- •1.3. Модели сложных систем
- •1.3.1. Классификация видов моделирования систем
- •1.3.2.Принципы и подходы к построению математических моделей
- •1.3.3. Этапы построения математической модели
- •1.4. Принципы и структура системного анализа
- •1.4.1. Принципы системного анализа
- •1.4.2. Структура системного анализа
- •Формирование общего представления системы
- •Основы оценки сложных систем
- •2.1. Основыные типы шкал измерения
- •2.1.1. Понятие шкалы
- •2.1.2. Шкалы номинального Типа
- •2.1.3. Шкалы порядка
- •2.1.4. Шкалы интервалов
- •2.1.6. Шкалы отношений
- •2.1.6 Шкалы разностей
- •2.1.7. Абсолютные шкалы
- •2.2. Обработка характеристик, измеренных в разных шкалах
- •2.3. Показатели и критерии оценки систем
- •2.3.1. Виды критериев качества
- •Соотношение понятий качества и эффективности систем
- •2.3.2. Шкала уровней качества систем с управлением
- •2.3.3. Показатели и критерии эффективности функционирования систем
- •2.4. Методы оценивания систем разделяются на качественные и количественные.
- •2.4.1 Методы типа «мозговая атака» или «коллективная генерация идей»
- •2.4.2. Методы типа сценариев
- •2.4.3. Методы экспертных оценок
- •2.4.4. Методы типа дельфи
- •2.4.5. Методы типа дерева целей
- •2.4.6. Морфологические методы
- •2.5. Методы количественного 0ценивания систем
- •2.5.1. Оценка сложных систем на основе теории полезности
- •2.5.2. Оценка сложных систем в условиях определенности
- •2.5.3. Оценка сложных систем в условиях риска на основе функции полезности
- •Данные для оценки вычислительной сети
- •2.5.4. Оценка сложных систем в условиях неопределенности
- •Оценка эффективности для неопределенных операций
- •Матрица эффективности программных продуктов
- •Матрица потерь
- •Сравнительные результаты оценки систем
- •2.5.5. Оценка систем на основе модели ситуационного управления
- •Примеры концептуальных моделей и методик оценивания систем
- •3.1. Способы измерения компьютерных систем
- •3.2. Тесты dhrystone, linpack и «ливерморские циклы»
- •3.3. Методика spec
- •3.4. Тест icomp 2.0 для оценки эффективности микропроцессоров intel
- •3.5. Методика aim
- •3.6. Методика оценки скорости обработки транзакций
- •3.7. Методика оценки графических возможностей
- •3.8. Методика оценки производительности суперкомпьютеров
- •3.9 Методика оценки конфигураций web
- •Основы управления
- •4.1. Общие положения
- •4.1.1. Аксиомы теории управления
- •4.1.2. Принцип необходимого разнообразия эшби
- •4.2. Модели основных функций организационно-технического управления
- •4.2.1. Содержательное описание функций управления
- •4.2.2. Модель общей задачи принятия решении
- •4.2.3. Модель функции контроля
- •4.2.4. Методы прогнозирования
- •4.2.5. Модель функции планирования
- •4.2.6. Модели функции оперативного управления
- •4.3. Организационная структура систем с управлением
- •4.3.1. Понятие структуры системы
- •4.3.2. Понятие организационной структуры и ее основные характеристики
- •4.3.3. Виды организационных структур
- •4.4. Качество управления
- •4.4.1. Степень соответствия решений состояниям объекта управления
- •4.4.2. Критерии ценности информации и минимума эвристик
- •4.4.3. Требования к управлению в системах специального назначения
- •Математический инструментарий в управлении проектами с учётом рисков
- •5.1. Предварительный выбор объекта инвестирования с помощью дерева решений
- •5.1.1. Понятие экономического риска
- •5.1.2. Понятие инвестиционного проекта
- •5.1.3. Примеры задач по привлечению инвесторов
- •5.1.4. Анализ и решение задач с помощью дерева решений
- •5.1.5. Пример процедуры принятия решения
- •5.2. Прогнозирование реализации инвестиционного проекта с помощью логистических кривых
- •5.2.1. Логистичекий подход при решении задач управления материальными и денежными потоками
- •5.2.2. Система управления процессом реализации инвестиционного проекта
- •5.2.3. Основные тренды переходного процесса
- •5.2.4. Выбор варианта освоения инвестиций
- •5.3. Теория дискретного управления для анализа экономических систем
- •5.3.1. Дискретная система и ее передаточная функция
- •5.3.2. Передаточная функция экономической системы
- •5.3.3. Модель в контуре управления экономической системы
- •5.3.4. Двушкальные системы
- •5.4. Модель анализа устойчивости инвестиционного процесса
- •5.4.1. Базовый инструментарий оценки устойчивости процесса освоения инвестиций
- •5.4.2. Перечисление инвестиционных сумм частями
- •5.4.3. Критерий устойчивости инвестиционного процесса
- •5.5. Методика определения объема финансирования с учетом устойчивости инвестиционного процесса
1.3. Модели сложных систем
Под моделированием понимается процесс исследования реальной системы, включающий построение модели, изучение ее свойств И перенос полученных сведений на моделируемую систему.
Общими функциями моделирования являются описание, объяснение и прогнозирование поведения реальной системы.
Типовыми целями моделирования могут быть поиск оптимальных или близких к оптимальным решений, оценка эффективности решений, определение свойств системы (чувствительности к изменению значений характеристик и др.), установление взаимосвязей между характеристиками системы, перенос информации во времени. Термин «модель» имеет весьма многочисленные трактовки. В наиболее общей формулировке мы будем придерживаться следующего определения модели. Модель - это объект, который имеет сходство в некоторых отношениях с прототипом и служит средством описания и/или объяснения, и/или прогнозирования поведения прототипа.
Формальное определение модели (1.1) определяет модель как изоморфизм A на Ψ.
Частные модели могут обозначаться как гомоморфизм:
f: A →
Ψ или
A
Ψ
Оператор f в этом обозначении указывает на способ, который позволяет построить требуемую модель.
Важнейшим качеством модели является то, что она дает упрощенный образ, отражающий не все свойства прототипа, а только те, которые существенны для исследования.
Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени. Для адекватного моделирования этих аспектов в автоматизированных информационных системах различают функциональные, информационные и поведенческие модели, пересекающиеся друг с другом.
Функциональная модель системы описывает совокупность выполняемых системой функций, характеризует морфологию системы (ее построение) - состав функциональных подсистем, их взаимосвязи.
Информационная модель отражает отношения между элементами системы в виде структур данных (состав и взаимосвязи).
Поведенческая (событийная) модель описывает информационные процессы (динамику функционирования), в ней фигурируют такие категории, как состояние системы, событие, переход из одного состояния в другое, условия перехода, последовательность событий.
Особенно велико значение моделирования в системах, где натурные эксперименты невозможны по целому ряду причин: сложность, большие материальные затраты, уникальность, длительность эксперимента. Так, нельзя «провести войну в мирное время», натурные испытания некоторых типов систем связаны с их разрушением, для экспериментальной проверки сложных систем управления требуется длительное время и т.д.
Можно выделить три основные области применения моделей: обучение, научные исследования, управление. При обучении с помощью моделей достигается высокая наглядность отображения различных объектов и облегчается передача знаний о них. Это в основном модели, позволяющие описать и объяснить систему. В научных исследованиях модели служат средством получения, фиксирования и упорядочения новой информации, обеспечивая развитие теории и практики. В управлении модели используются для обоснования решений. Такие модели должны обеспечить как описание, так и объяснение и предсказание поведения систем.