
- •Оглавление
- •Глава 1. Основы системного анализа 4
- •Глава 2. Основы оценки сложных систем 34
- •Глава 3. Примеры концептуальных моделей и методик оценивания систем 75
- •Глава 4. Основы управления 89
- •Глава 5. Математический инструментарий в управлении проектами с учётом рисков 127
- •Основы системного анализа
- •1.1. Сущность автоматизации управления в сложных системах
- •1.1.1. Структура системы с управлением
- •1.1.2. Пути совершенствования систем с управлением
- •1.1.3. Цель автоматизации управления
- •1.2. Основные понятия системного анализа
- •1.2.1. Задачи системного анализа
- •1.2.2. Понятие системы как семантической модели
- •1.2.3. Классификация систем
- •1.2.4. Основные определения системного анализа
- •1.3. Модели сложных систем
- •1.3.1. Классификация видов моделирования систем
- •1.3.2.Принципы и подходы к построению математических моделей
- •1.3.3. Этапы построения математической модели
- •1.4. Принципы и структура системного анализа
- •1.4.1. Принципы системного анализа
- •1.4.2. Структура системного анализа
- •Формирование общего представления системы
- •Основы оценки сложных систем
- •2.1. Основыные типы шкал измерения
- •2.1.1. Понятие шкалы
- •2.1.2. Шкалы номинального Типа
- •2.1.3. Шкалы порядка
- •2.1.4. Шкалы интервалов
- •2.1.6. Шкалы отношений
- •2.1.6 Шкалы разностей
- •2.1.7. Абсолютные шкалы
- •2.2. Обработка характеристик, измеренных в разных шкалах
- •2.3. Показатели и критерии оценки систем
- •2.3.1. Виды критериев качества
- •Соотношение понятий качества и эффективности систем
- •2.3.2. Шкала уровней качества систем с управлением
- •2.3.3. Показатели и критерии эффективности функционирования систем
- •2.4. Методы оценивания систем разделяются на качественные и количественные.
- •2.4.1 Методы типа «мозговая атака» или «коллективная генерация идей»
- •2.4.2. Методы типа сценариев
- •2.4.3. Методы экспертных оценок
- •2.4.4. Методы типа дельфи
- •2.4.5. Методы типа дерева целей
- •2.4.6. Морфологические методы
- •2.5. Методы количественного 0ценивания систем
- •2.5.1. Оценка сложных систем на основе теории полезности
- •2.5.2. Оценка сложных систем в условиях определенности
- •2.5.3. Оценка сложных систем в условиях риска на основе функции полезности
- •Данные для оценки вычислительной сети
- •2.5.4. Оценка сложных систем в условиях неопределенности
- •Оценка эффективности для неопределенных операций
- •Матрица эффективности программных продуктов
- •Матрица потерь
- •Сравнительные результаты оценки систем
- •2.5.5. Оценка систем на основе модели ситуационного управления
- •Примеры концептуальных моделей и методик оценивания систем
- •3.1. Способы измерения компьютерных систем
- •3.2. Тесты dhrystone, linpack и «ливерморские циклы»
- •3.3. Методика spec
- •3.4. Тест icomp 2.0 для оценки эффективности микропроцессоров intel
- •3.5. Методика aim
- •3.6. Методика оценки скорости обработки транзакций
- •3.7. Методика оценки графических возможностей
- •3.8. Методика оценки производительности суперкомпьютеров
- •3.9 Методика оценки конфигураций web
- •Основы управления
- •4.1. Общие положения
- •4.1.1. Аксиомы теории управления
- •4.1.2. Принцип необходимого разнообразия эшби
- •4.2. Модели основных функций организационно-технического управления
- •4.2.1. Содержательное описание функций управления
- •4.2.2. Модель общей задачи принятия решении
- •4.2.3. Модель функции контроля
- •4.2.4. Методы прогнозирования
- •4.2.5. Модель функции планирования
- •4.2.6. Модели функции оперативного управления
- •4.3. Организационная структура систем с управлением
- •4.3.1. Понятие структуры системы
- •4.3.2. Понятие организационной структуры и ее основные характеристики
- •4.3.3. Виды организационных структур
- •4.4. Качество управления
- •4.4.1. Степень соответствия решений состояниям объекта управления
- •4.4.2. Критерии ценности информации и минимума эвристик
- •4.4.3. Требования к управлению в системах специального назначения
- •Математический инструментарий в управлении проектами с учётом рисков
- •5.1. Предварительный выбор объекта инвестирования с помощью дерева решений
- •5.1.1. Понятие экономического риска
- •5.1.2. Понятие инвестиционного проекта
- •5.1.3. Примеры задач по привлечению инвесторов
- •5.1.4. Анализ и решение задач с помощью дерева решений
- •5.1.5. Пример процедуры принятия решения
- •5.2. Прогнозирование реализации инвестиционного проекта с помощью логистических кривых
- •5.2.1. Логистичекий подход при решении задач управления материальными и денежными потоками
- •5.2.2. Система управления процессом реализации инвестиционного проекта
- •5.2.3. Основные тренды переходного процесса
- •5.2.4. Выбор варианта освоения инвестиций
- •5.3. Теория дискретного управления для анализа экономических систем
- •5.3.1. Дискретная система и ее передаточная функция
- •5.3.2. Передаточная функция экономической системы
- •5.3.3. Модель в контуре управления экономической системы
- •5.3.4. Двушкальные системы
- •5.4. Модель анализа устойчивости инвестиционного процесса
- •5.4.1. Базовый инструментарий оценки устойчивости процесса освоения инвестиций
- •5.4.2. Перечисление инвестиционных сумм частями
- •5.4.3. Критерий устойчивости инвестиционного процесса
- •5.5. Методика определения объема финансирования с учетом устойчивости инвестиционного процесса
4.3. Организационная структура систем с управлением
4.3.1. Понятие структуры системы
Создание системы с управлением требует выявления таких элементов и отношений между ними (внутреннего устройства системы), которые реализуют целенаправленное функционирование системы. Элементы любого содержания, необходимые для реализации функции, называются частями или компонентами системы. Совокупность частей (компонентов) системы образует ее элементный (компонентный) состав. Упорядоченное множество отношений между частями, необходимое для реализации функции, образует структуру системы.
Понятие структуры происходит от латинского слова structure, означающего строение, расположение, порядок, а наиболее точное определение структуры выглядит, как известно из системного анализа, следующим образом: «Под структурой понимается совокупность элементов системы и взаимосвязей между ними». Понятие «связи» может характеризовать одновременно и строение (статику), и функционирование (динамику) системы. Кроме того, при проведении анализа используются два определяющих понятия структуры: материальная структура и формальная структура.
В общем случае под формальной структурой понимается совокупность функциональных элементов и их отношений, необходимых и достаточных для достижения системой поставленных целей. Из определения следует, что формальная структура описывает нечто общее, присущее системам одного типа. В свою очередь, материальная структура является носителем конкретных типов и параметров элементов системы и их взаимосвязей.
Приведенные рассуждения позволяют сделать два вывода относительно сущности формальных структур: фиксированной цели соответствует, как правило, одна и только одна формальная структура; одной формальной структуре может соответствовать множество материальных структур.
При проведении системного анализа на этапе изучения формальных и материальных структур системы аналитики решают обычно следующие задачи:
-
соответствует ли существующая структура основным целями функциям системы;
-
требуется ли реорганизация существующей структуры либо необходимо спроектировать принципиально новую структуру;
-
каким образом распределить (перераспределить) новые и старые функции системы по элементам структуры.
Все эти задачи во многом зависят от типов применяемых в системе структур. В этой связи кратко рассмотрим ряд типовых структур систем, использующихся при описании организационно-экономических, производственных и технических объектов.
Типовыми структурами систем являются линейная, кольцевая, сотовая, многосвязная, иерархическая, звездная, графовая.
Линейная структура характеризуется тем, что каждая вершина связана с двумя соседними. При выходе из строя хотя бы одного элемента (связи) структура разрушается.
Кольцевая структура отличается замкнутостью, любые два элемента обладают двумя направлениями связи. Это повышает скорость общения, делает структуру более живучей.
Сотовая структура характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.
Многосвязная структура имеет структуру полного графа. Надежность функционирования максимальная, эффективность функционирования высокая за счет -наличия кратчайших путей, стоимость максимальная. Частным случаем многосвязной структуры является колесо.
Иерархическая структура (см. рис. 4.10) получила наиболее широкое распространение при проектировании систем управления. В ней все элементы кроме верхнего и нижнего уровней обладают как командными, так и подчиненными функциями управления.
Поскольку иерархические структуры имеют важное значение в практике управления, дадим основные формальные определения.
Пусть X = {Х1 ,..., Хп} - конечное множество. Тогда иерархией s на X называется система подмножеств (классов) {S : S X}, такая, что
1) X s
2) {Xj} s, i=1, …,n;
3) если классы S и S' из s имеют не пустое пересечение, то S S' либо S' 5.
Например, X = {Х1 , ..., Х7}. Тогда система подмножеств:
является иерархией на X.
Графом G=G(s) иерархии s на X называется ориентированный граф (V, Е), вершины v V которого соответствуют множествам S s, а ребра e E- парам (S', S), таким, что S' S, S' S и в s не существует S'' S, для которого S' S'' S .
Ребро е = (S', S) изображается стрелкой с началом S' и концом S. Так, граф G = (V, Е) иерархии s из представленного примера имеет множество вершин:
В графе иерархии вершина может быть концом нескольких стрелок, но является началом только одной стрелки. В случаях когда смысл понятен, ребра графа стрелками могут не помечаться.
Звездная структура имеет центральный узел, который играет роль центра, все остальные элементы системы являются подчиненными.
Графовая структура инвариантна по отношению к иерархической и используется обычно при описании производственно-технологических систем.