Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_iz_biletov_po_diskretke_Chast....doc
Скачиваний:
71
Добавлен:
21.12.2018
Размер:
2.65 Mб
Скачать

36.Ориентированные и неориентированные графы. Основные понятия.

ОРИЕНТИРОВАННЫЕ ГРАФЫ.(ОРГРАФЫ)

Пусть Х не пустое множество, а Х2=Х×Х - множество всех его пар.

О: Пара <Г,Х>=G называется ориентированным графом(орграфом), где Г-произвольное подмножество множества Х2 (Г⊆Х2)

Элементы х∈Х называются вершинами, а пара <X,Y>∈Г дугами орграфа.

Замечание: тройку множеств <Г,Х,Y>, где Г⊆Х,Y называют многозначным отображателем из множества Х во множестве У. Обозначают Г:Х+Y.

При этом, если х∈Х, то множество Г(х)={y∈Y|<x,y>∈Г}⊆Y называют образом элемента х, а Г-1(y)={x∈X|<x,y>∈Г}⊆X называют прообразом y.

Если А⊆Х, то Г(А)=∨х∈АГ(х) - это образ множества А

А⊆Y, то Г-1(А)=∨y∈AГ-1(А) - это прообраз мн-ва А

Пусть задан орграф G=<Г,Х>

1. если y∈Г(х), т.е. <x,y> дуга, то говорят что она исходит из вершины х и заходит в у.

2. Дуга называется инцидентной в вершине х, если она заходит в х или исходит из х.

3. Дуга <x,х> называется петлей.

4. Вершина, не имеющая инцидентных дуг называется изолированной. Две вершины называются смежными, если существует дуга инцидентная им обоим.

Пути в орграфе.

О1: Последовательность дуг орграфа такая что начало каждой последующей дуги совпадает с концом предыдущей называется путем.

О2: Путь у которого начало первой дуги совпадает с концом последней называется замкнутым путем, или контуром.

О3: Путь (контур) называется элементарным, если все его вершины различны за исключением первой и последней.

О4:Путь (контур) называется простым, если все его дуги различны.

Примеры:

1) <x1,x2> <x2,x5> <x5,x4> - не контур, но простой эл-ый путь.

2) <x1,x2> <x2,x3> <x3,x1> - эл-ый простой путь, контур.

3) <x1,x2> <x2,x5> <x5,x4> <x4,x2> <x2,x3> <x3,x1> - контур, простой, не эл-ый

4) <x1,x2> <x2,x3> <x3,x1> <x1,x2> <x2,x3> <x3,x1> - не простой, не эл-ый, контур

5) <x1,x2> <x2,x5> <x5,x4> <x4,x2> <x2,x3> - не путь

НЕОРИЕНТИРОВАННЫЕ ГРАФЫ

Пусть Х-непустое множество. Х(2) - мн-во всех 2-х элементарных подмножеств множества Х.

Пример: Х={1,2,3}. X(2)={{1,2},{1,3},{2,3}}

О: Пара <Q,X>=G, где Q произвольное подмножество множества Х (Q⊆X) называется неориентированным графом. Элементы х∈Х - вершинами, а элементы {x,y}∈Q - (неупорядоченные пары) - ребрами.

Замечание: неориентированные графы можно изучать как графы симметричных бинарных отношений.

Подграфом графа G называется G’, если X’⊂X, Q’⊂Q (Г’⊂Г), а в случае если X’=X, то подграфом называют частичным графом.

О1: Цепью неориентированного графа называется последотельность ребер, которая может быть перемещена в путь введением соответствующей ориентации на её ребрах.

О2: Циклом называется цепь у которой 1-ая вершина совпадает с последней.

О3: Цепь (цикл) называется элементарной, если некоторая вершина встречается в ней не более одного раза.

О4: Цепь (цикл) называется простой, если некоторой ребро встречается в ней не более одного раза.

37.Матричное задание графа. Матрицы сложности и инциденций. Цикломатическая матрица.

G=<Г,х> , |x|=n , x={

Пример:

Для вершины её полустепенью захода называется число , заходящих в неё дуг, а число полустепенью исхода исходящих дуг.

называется степенью вершины.

Замечание: для неориентированных графов матрица смежностей является симметричными, а элементы определиться следующим образом:

1 – существует ребро.

0 – в остальных случаях.

Степень – число инцыдентных вершине рёбер.

Матрица инциденций:

G=<Г,х> , |x|=n , |Г|=N, x={

Пусть граф не имеет петель.

Замечание: для неориентированного графа инциденты определяются следующим образом:

Цикломатическая матрица:

G=<Q,x> - неор. граф.

n- вершины, N – ребра.

- простые элементарные циклы, преобразуем в орграф: