Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора к экзамену.doc
Скачиваний:
4
Добавлен:
16.12.2018
Размер:
4.94 Mб
Скачать

Сложное сопротивление.

Теория прочности.

Сложное сопротивление возникает тогда, когда в поперечном сечении бруса действуют несколько иловых факторов.

Для сложного сопротивления выработаны теории, критерии (гипотезы) прочности, о преимущественном влиянии какого-либо из факторов. При этом, фактическое напряженное состояние заменяется эквивалентным линейным состоянием, которые приводятся к нормальным эквивалентным напряжениям.

1. Теория наибольших нормальных напряжений

Принимается, что прочность зависит от величины наибольшего нормального напряжения.

в данном случае - наибольшее главное напряжение.

Данная теория для пластичных материалов не подтверждается, но удовлетворительно работает при оценке прочности при растяжении для хрупких материалов.

2. Теория набольших линейных деформаций.

Согласно этой теорией причиной разрушения является наибольшая одноосная (линейная деформация).

≤[ε]

С использованием обобщенного закона Гука:

Умножив левую и правую часть на модуль упругости, получим:

В этом случае учитываются три главных напряжения.

Данный критерий подтверждается для хрупких материалов.

3. Теория наибольших касательных напряжений

Этот критерий находит наибольшее применение для эквивалентных напряжений, выраженных формулой:

Данная теория удовлетворительна для пластичных материалов.

4. Энергетическая теория.

Согласно этой теории, предельное состояние определяется предельным значением энергии растяжения, с учетом действия всех трех главных напряжений.

Этот критерий находит наибольшее применение для эквивалентных напряжений, выраженных формулой.

Данная теория хорошо согласуется с расчетами пластичных материалов.

5.Теория Мора

≤[σ]

k – коэффициент, учитывающий различное сопротивление материалов растяжению и сжатию.

Изгиб с кручением

В качестве примера на изгиб с кручением может быть рассмотрена работа вала для передачи любого вращательного движения.

d – диаметр вала.

Крутящий момент, передаваемый этим колесом:

Расчетная схема действия крутящих моментов:

рис.1

Изгибающий момент вызывает нормальное напряжение на этом валу.

Крутящие моменты вызывают касательные напряжения.

Используем третью теорию (теорию наибольших касательных напряжений) в виде:

- условие прочности для изгиба с кручением.

При помощи вышеприведенного уравнения можно решать основные задачи сопротивления материалов применительно к изгибу с кручением.

Б18: Критические нагрузки при продольном изгибе. Задача Эйлера.

Формула Эйлера.

При сжатии стержней значительной длинны в ряде случаев не сохраняется первоначальная форма равновесия. Деформация сжатия переходит в деформацию изгиба, разрушение происходит при напряжениях много меньших чем предел текучести. Нагрузка, при которой происходит потеря устойчивости называется критической

Задача Эйлера.

Заключается в нахождении критической нагрузки.

пусть описываем у синусоидой

Проинтегрировав, получим

при x=l/2 при x=0

(*)

при x=l/2

- формула Эйлера.

Вводя коэффициент μ-коэффициент определяющий форму заделки:

Формула Эйлера справедлива лишь в пределах пропорциональности т.е. когда работает закон Гука.

Б19: Расчеты на устойчивость при продольном изгибе.

Методические основы расчета сжатых стержней.

n=2- для стали, n=5- для чугуна

Условие устойчивости

i-радиус инерцииобозначим -гибкость в геометрическом смысле.

λ

п λпр -гибкость в пределах пропорциональностиПри λ>λпр то в этих случаях используется формула Эйлера.

От предела пропорциональности до предела текучести работает формула Ясинского , где a и b – коэффициенты зависящие от свойств металла.

В расчетах на устойчивость используется коэффициент уменьшения сжимающих напряжений. [σy]=φ[σ]сж – допускаемое напряжение сжатия.

Алглритмы решения задач на устойчивость

Алгоритм определения допустимой нагрузки с использованием формулы Эйлера (Ясинского)

Дано:

1.1. Определение расчетного значения гибкости стержня: .

1.2. Оценивается применимость формулы Эйлера или Ясинского для расчетов .

1.3. При критическая сила рассчитывается по формуле Эйлера.

1.4. При критическую силу или напряжение определяют по формуле Ясинского.

1.5. Определение допускаемого значения сжимающей силы .

2. Пусть дана нагрузка P, а также допускаемое напряжение на сжатие ,l.

1.Необходимо задаться коэффициентом уменьшения сжимающих напряжений .

2.Определяются допускаемые напряжения на устойчивость .

3.Определяется площадь сечения .

4.Подбирается стандартное сечение (уголок, швейлер, двутавр и т.д)

5.Определяется рабочее напряжение и сравнивается с допустимым

считается, что сечение подобрано верно, если отличаются менее чем на 5% (в обе стороны).

6.При неудовлетворительных расчетах по справочнику выбирается новое сечение, расчитывается значение гибкости λ и с учетом свойства материала и гибкости определяется новое значение коэффициента снижения сжимающих напряжений . Расчеты, начиная с пункта 2, повторяются, пока не будет выполнено условие пункта 5.

Б20: КПД сложных систем.

Механический коэффициент полезного действия

Работа сил терния затрачивается на нагревание и износ кинематических пар.

В общем случае баланс работ для любого механизма определяется работой движущих сил, минус работа полезного сопротивления, минус работа сил трения.

.

Коэффициент полезного действия оценивает полезную используемую энергию.

<1 из-за Amp (1)

При холостом ходе КПД равен нулю.

Аналогично можно определить коэффициент потерь .

Определение КПД для сложных систем.

Последовательное соединение механизмов.

Для всей этой системы можно записать:

рис.1

рис.2

Пусть КПД пары подшипников равен , а КПД зубчатых колес , в данном случае (см. рисунок) КПД системы будет равен . (Рис. 2)

Параллельное соединение механизмов.

Тогда КПД всей системы:

Б21: Теория гибкой нити. Определение провисания.

Б53: Теория гибкой нити. Уравнение состояния

Расчет гибких нитей.

В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес. Это — так называемые гибкие нити. Таким термином обозначаются гибкие элементы в линиях электропередач, в канатных дорогах, в висячих мостах и других сооружениях.

Пусть (Рис.1) имеется гибкая нить постоянного сечения, нагруженная собственным весом и подвешенная в двух точках, находящихся на разных уровнях. Под действием собственного веса нить провисает по некоторой кривой АОВ.

Горизонтальная проекция расстояния между опорами (точками ее закрепления), обозначаемая , носит название пролета.

Нить имеет постоянное сечение, следовательно, вес ее распределен равномерно по ее длине. Обычно провисание нити невелико по сравнению с ее пролетом, и длина кривой АОВ мало отличается (не более чем на 10%) от длины хорды АВ. В этом случае с достаточной степенью точности можно считать, что вес нити равно- мерно распределен не по ее длине, а по длине ее проекции на горизонтальную ось, т. е. вдоль пролета l.

Рис.1. Расчетная схема гибкой нити.

Эту категорию гибких нитей мы и рассмотрим. Примем, что интенсивность нагрузки, равномерно распределенной по пролету нити, равна q. Эта нагрузка, имеющая размерность сила/длина, может быть не только собственным весом нити, приходящимся на единицу длины пролета, но и весом льда или любой другой нагрузкой, также равномерно распределенной. Сделанное допущение о законе распределения нагрузки значительно облегчает расчет, но делает его вместе с тем приближенным; если при точном решении (нагрузка распределена вдоль кривой) кривой провисания будет цепная линия, то в приближенном решении кривая провисания оказывается квадратной параболой.

Начало координат выберем в самой низшей точке провисания нити О, положение которой, нам пока неизвестное, очевидно, зависит от величины нагрузки q, от соотношения между длиной нити по кривой и длиной пролета, а также от относительного положения опорных точек. В точке О касательная к кривой провисания нити, очевидно, горизонтальна. По этой касательной направим вправо ось .

Вырежем двумя сечениями — в начале координат и на расстоянии от начала координат (сечение m — n) — часть длины нити. Так как нить предположена гибкой, т. е. способной сопротивляться лишь растяжению, то действие отброшенной части на оставшуюся возможно только в виде силы, направленной по касательной к кривой провисания нити в месте разреза; иное направление этой силы невозможно.

На рис.2 представлена вырезанная часть нити с действующими на нее силами. Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз. Воздействие левой отброшенной части (горизонтальная сила Н) направлено, ввиду того, что нить работает на растяжение, влево. Действие правой отброшенной части, сила Т, направлено вправо по касательной к кривой провисания нити в этой точке.

Cоставим уравнение равновесия вырезанного участка нити. Возьмем сумму моментов всех сил относительно точки приложения силы Т и приравняем ее нулю. При этом учтем, опираясь на приведенное в начале допущение, что равнодействующая распределенной нагрузки интенсивностью q будет , и что она приложена посредине отрезка . Тогда

Рис.2. Фрагмент вырезанной части гибкой нити

откуда

(1)

Отсюда следует, что кривая провисания нити является параболой. Когда обе точки подвеса нити находятся на одном уровне, то Величина в данном случае будет так называемой стрелой провисания. Ее легко определить. Так как в этом случае, ввиду симметрии, низшая точка нити находится посредине пролита, то ; подставляя в уравнение (1) значения и получаем:

(2)

Из этой формулы находим величину силы Н:

(3)

Величина Н называется горизонтальным натяжением нити.

Таким образом, если известны нагрузка q и натяжение H, то по формуле (2) найдем стрелу провисания . При заданных и натяжение Н определяется формулой (3). Связь этих величин с длиной нити по кривой провисания устанавливается при помощи известной из математики приближенной формулы)

Составим еще одно условие равновесия вырезанной части нити, а именно, приравняем нулю сумму проекций всех сил на ось :

Из этого уравнения найдем силу Т — натяжение в произвольной точке

Откуда следует, что сила Т увеличивается от низшей точки нити к опорам и будет наибольшей в точках подвеса — там, где касательная к кривой провисания нити составляет наибольший угол с горизонталью. При малом провисании нити этот угол не достигает больших значений, поэтому с достаточной для практики степенью точности можно считать, что усилие в нити постоянно и равно ее натяжению Н. На эту величину обычно и ведется расчет прочности нити. Если все же требуется вести расчет на наибольшую силу у точек подвеса, то для симметричной нити ее величину определим следующим путем. Вертикальные составляющие реакций опор равны между собой и равны половине суммарной нагрузки на нить, т. е. . Горизонтальные составляющие равны силе Н, определяемой по формуле (3). Полные реакции опор получатся как геометрические суммы этих составляющих:

Условие прочности для гибкой нити, если через F обозначена площадь сечения, имеет вид:

Заменив натяжение Н его значением по формуле (3), получим:

Из этой формулы при заданных , , и можно определить необходимую стрелу провисания . Решение при этом упростится, если в включен лишь собственный вес; тогда , где — вес единицы объема материала нити, и

т. е. величина F не войдет в расчет.

Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (1) значения и , находим и :

Отсюда из второго выражения определяем натяжение

а деля первое на второе, находим:

или

Имея в виду, что , получаем:

или

Подставив это значение в формулу определенного натяжения Н, окончательно определяем:

(6.15)

Два знака в знаменателе указывают на то, что могут быть две основные формы провисания нити. Первая форма при меньшем значении Н (знак плюс перед вторым корнем) дает нам вершину параболы между опорами нити. При большем натяжении Н (знак минус перед вторым корнем) вершина параболы расположится левее опоры А (Рис.1). Получаем вторую форму кривой. Возможна и третья (промежуточная между двумя основными) форма провисания, соответствующая условию ; тогда начало координат совмещается с точкой А. Та или иная форма будет получена в зависимости от соотношений между длиной нити по кривой провисания АОВ (Рис.1) и длиной хорды АВ.

Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н, то легко получить значения расстояний а и b и стрел провисания, и . Разность h уровней подвески равна:

Подставим в это выражение значения и , и преобразуем его, имея в виду, что :

откуда

а так как то

и

Следует иметь в виду, что при будет иметь место первая форма провисания нити, при — вторая форма провисания и при — третья форма. Подставляя значения и в выражения для стрел провисания и , получаем величины и :

Теперь выясним, что произойдет с симметричной нитью, перекрывающей пролет , если после подвешивания ее при температуре и интенсивности нагрузки температура нити повысится до а нагрузка увеличится до интенсивности (например, из-за ее обледенения). При этом предположим, что в первом состоянии задано или натяжение , или стрела провисания (Зная одну из этих двух величин, всегда можно определить другую.)

При подсчете деформации нити, являющейся по сравнению с длиной нити малой величиной, сделаем два допущения: длина нити 'равна ее пролету, а натяжение постоянно и равно Н. При пологих нитях эти допущения дают небольшую погрешность.

В таком случае удлинение нити, вызванное увеличением температуры, будет равно

где — коэффициент линейного температурного расширения материала нити.

При повышении температуры нить удлиняется. В связи с этим увеличится ее стрела провисания и, как следствие, уменьшится ее натяжение. С другой стороны, из-за увеличения нагрузки, как видно из формулы (3), натяжение увеличится. Допустим, что окончательно натяжение увеличивается. Тогда удлинение нити, вызванное увеличением натяжения, будет, согласно закону Гука, равно:

Если окажется меньше, чем то величина будет отрицательной. При понижении температуры будет отрицательной величина

Таким образом, длина нити во втором ее состоянии будет равна длине при первом ее состоянии с добавлением тех деформаций, которые произойдут от повышения температуры и натяжения:

Изменение длины нити вызовет изменение и ее стрелы провисания. Вместо , она станет .

Теперь заменим в последнем уравнении и их известными выражениями, а деформации и — также их полученными ранее значениями. Тогда уравнение для S2 примет следующий вид:

В этом уравнении заменим и их значениями по формуле (2):

и

Тогда, после некоторых преобразований, уравнение для расчета натяжения может быть написано в виде:

Определив из этого уравнения натяжение , можно найти по формуле (2) и стрелу .

В случае, если при переходе от первого ко второму состоянию нагрузка не изменяется, а изменяется лишь температура, то в последнем уравнении интенсивность заменяется на . В случае, если при переходе от первого ко второму состоянию не изменяется температура, а изменяется лишь нагрузка, то в этом уравнении средний член в квадратной скобке равен нулю. Полученное уравнение пригодно, конечно, и при понижении температуры и уменьшении нагрузки.

В тех случаях, когда стрела провисания не является малой по сравнению с пролетом, выведенные выше формулы, строго говоря, неприменимы, так как действительная кривая провисания нити, цепная линия, будет уже значительно отличаться от параболы, полученной нами благодаря предположению о равномерном распределении нагрузки по пролету нити, а не по ее длине, как то имеет место в действительности.

Точные подсчеты показывают, что значение погрешности в величине натяжения Н, вызванной этим предположением, таково: при отношении погрешность не превосходит 0,3%, при ошибка составляет уже 1,3%, а при погрешность несколько, превосходит 5%.

Б24: Основы классификации машин. Назначение и роль передач в машинах.

Б51: Механические передачи. Назначение. Основные разновидности.