
- •Содержание
- •4.1. Основные понятия 10
- •5.1. Основные понятия 12
- •7.1. Основные понятия 18
- •Глава I. Элементы линейной алгебры
- •§ 1. Матрицы. Виды матриц
- •§ 2. Действия над матрицами
- •Умножение на число. Сложение и вычитание
- •Умножение матриц
- •Возведение в степень. Транспонирование матрицы
- •§3. Определители
- •3.1. Основные понятия
- •3.2. Свойства определителей
- •§4. Обратная матрица
- •4.1. Основные понятия
- •4.2. Вычисление обратной матрицы методом присоединенной матрицы.
- •4.3. Вычисление обратной матрицы методом элементарных преобразований
- •§ 5. Системы m линейных уравнений с n переменными
- •5.1. Основные понятия
- •Системы n линейных уравнений с n переменными. Формулы Крамера. Метод обратной матрицы.
- •Метод обратной матрицы
- •Метод Гаусса
- •Глава II. Элементы векторной алгебры
- •§ 6. Прямоугольная система координат в пространстве
- •§ 7. Векторы
- •7.1. Основные понятия
- •7.2. Линейные операции над векторами
- •7.3. Разложение вектора по базису. Координаты вектора Модуль вектора. Направляющие косинусы
- •7.4. Действия над векторами, заданными координатами
- •7.5. Деление отрезка в данном отношении
- •§9. Векторное произведение векторов
- •9.1. Определение и вычисление векторного произведения векторов
- •9.2. Свойства векторного произведения
- •9.3. Приложения векторного произведения
- •§ 10. Смешанное произведение векторов
- •10.1. Определение, свойства и вычисление смешанного произведения векторов
- •10.2. Приложения смешанного произведения
- •Глава III. Аналитическая геометрия на плоскости
- •§ 11. Системы координат на плоскости
- •11.1. Прямоугольная и полярная системы координат
- •11.2. Связь между прямоугольными и полярными координатами
- •11.3. Преобразование прямоугольных координат
- •§ 12. Прямая на плоскости
- •12.1. Общее уравнение прямой на плоскости
- •12.2. Частные случаи расположения прямой на плоскости. Уравнение в отрезках на осях
- •Уравнение прямой, проходящей через данную точку: а) параллельной данной прямой; б) перпендикулярной данной прямой.
- •Уравнение прямой , проходящей через две точки. Каноническое уравнение прямой. Параметрические уравнения прямой.
- •12.5. Уравнение прямой с угловым коэффициентом
- •12.6. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой
- •§ 13. Линии второго порядка на плоскости
- •13.1. Эллипс
- •13.2. Гипербола
- •13.3. Парабола
- •13.4. Общее уравнение линии второго порядка
- •Глава IV. Аналитическая геометрия в пространстве
- •§ 14. Плоскость
- •14.1. Общее уравнение плоскости
- •14.2. Расположение плоскости в пространстве. Уравнение плоскости в отрезках на осях.
- •14.3. Уравнение плоскости, проходящей через три точки
- •14.4. Нормальное уравнение плоскости
- •14.5. Пучок плоскостей
- •14.6. Взаимное расположение плоскостей. Расстояние от точки до плоскости
- •§ 15. Прямая в пространстве.
- •15.1. Общие, канонические и параметрические уравнения прямой
- •15.2. Уравнения прямой, проходящей через две точки
- •15.3. Взаимное расположение прямых в пространстве. Условие принадлежности двух прямых одной плоскости.
- •§ 16. Прямая и плоскость в пространстве. Условие принадлежности прямой плоскости.
- •§ 17. Поверхности второго порядка
- •17.1. Эллипсоид.
- •Однополостный гиперболоид.
- •Двуполостный гиперболоид.
- •Эллиптический параболоид.
- •Гиперболический параболоид
- •17.6. Конус второго порядка
- •17.7. Цилиндрические поверхности
- •Литература
§ 12. Прямая на плоскости
12.1. Общее уравнение прямой на плоскости
Пусть
в системе координат
задана прямая
,
проходящая через точку
,
и задан вектор
,
перпендикулярный прямой
.
Произвольная точка
будет лежать на прямой
,
тогда и только тогда, когда
,
.
Из условия перпендикулярности векторов следует, что
|
(1) – уравнение прямой, проходящей через данную точку и перпендикулярной данному вектору. |
Преобразуем
уравнение (1):
|
(2) – общее уравнение прямой. |
Вектор
называется нормальным
вектором
прямой
.
12.2. Частные случаи расположения прямой на плоскости. Уравнение в отрезках на осях
Пусть прямая
задана общим уравнением
.
Если
,
то прямая проходит через начало
координат;
, то
;
, то
;
Если
,
то
- это ось
;
,
то
- это ось
;
Если
.
можно преобразовать
к виду
,
,
обозначим
Получим
|
(3) – уравнение прямой в отрезках на осях, |
где
и
- точки пересечения с осями координат.
Уравнение (3)
используется при построении прямой в
системе координат
.
Пример 1.
Построить прямую
.
Приведем уравнение
к уравнению в отрезках на осях
.
Пример 2.
Построить прямую
.
Приведем
уравнение
к уравнению в отрезках на осях
,
,
.
-
Уравнение прямой, проходящей через данную точку: а) параллельной данной прямой; б) перпендикулярной данной прямой.
а)
Пусть прямая
задана общим уравнением
,
а прямая
параллельна прямой
и проходит через
точку
.
Составим
уравнение прямой
.
Произвольная точка
будет лежать на прямой
,
если
,
.
Из условия
перпендикулярности векторов получим
уравнение прямой
.
|
(4) – уравнение прямой, проходящей через данную точку и параллельной данной прямой. |
б) Пусть
прямая
задана общим уравнением
,
а прямая
перпендикулярна прямой
и проходит через точку
.
Составим уравнение прямой
.
Произвольная точка
будет принадлежать прямой
,
если
,
.
Из условия
параллельности векторов получаем
уравнение прямой
.
|
(5) – уравнение прямой, проходящей через данную точку и перпендикулярной данной прямой |
-
Уравнение прямой , проходящей через две точки. Каноническое уравнение прямой. Параметрические уравнения прямой.
1.
Пусть точки
и
лежат на прямой
.
Произвольная точка
будет
лежать на прямой
тогда и только тогда, когда
,
,
.
Из условия параллельности векторов получим уравнение.
|
(6) – уравнение прямой, проходящей через две точки |
2. Пусть
в уравнении
(6)
,
,
.
Тогда получим
|
(7) – каноническое уравнение прямой |
3. Пусть
в каноническом уравнении
,
где
-
параметр,
.
Тогда
|
|
(8) – параметрические уравнения прямой |