- •552800 И 654600 - Информатика и вычислительная техника
- •Введение
- •Часть 1. Информатика и современное общество
- •1. Информатизация общества и информатика
- •1.1. Информационное общество
- •1.2. Понятие информатики
- •Средства для преобразования информации
- •Часть 2. Информация, ее представление и измерение
- •2. Информация
- •2.1. Понятие и характерные черты информации
- •2.2. Классификация информации
- •2.3. Свойства информации
- •3. Сигнал как материальный носитель информации
- •3.1. Виды сигнала
- •3.2. Преобразования сигнала
- •3.3. Системы счисления
- •3.3.1. Правила перевода чисел из одной системы счисления в другую
- •3.3.1.1. Правила перевода целых чисел
- •3.3.1.2. Правила перевода правильных дробей
- •3.3.1.3. Правило перевода дробных чисел
- •3.3.2. Правила выполнения простейших арифметических действий
- •3.3.2.1. Правила сложения
- •3.3.2.2. Правила вычитания
- •3.3.2.3. Правила умножения
- •3.3.2.4. Правила деления
- •4. Кодирование дискретного сигнала
- •4.1. Кодирование по образцу
- •4.1.1. Прямые коды
- •4.1.2. Ascii-коды
- •4.1.3. Коды, учитывающие частоту информационных элементов
- •4.1.4. Коды Грея
- •4.1.5. Код Штибица
- •4.2. Криптографическое кодирование
- •4.2.1. Метод простой подстановки
- •4.2.2. Метод Вижинера
- •4.3. Эффективное кодирование
- •4.3.1. Метод Шеннона-Фано
- •4.3.2. Метод Хаффмена
- •4.3.3. Повышение эффективности кодирования
- •4.3.4. Декодирование эффективных кодов
- •4.3.5. Специальные методы эффективного кодирования
- •4.3.5.1. Методы эффективного кодирования числовых последовательностей
- •4.3.5.2. Методы эффективного кодирования словарей
- •Основной вспомогательный
- •4.3.5.3. Методы эффективного кодирования естественно-языковых текстов
- •4.4. Помехозащитное кодирование
- •4.4.1. Искажение кодовых комбинаций
- •4.4.2. Кодовое расстояние и корректирующая способность кода
- •4.4.3. Коды, исправляющие ошибки
- •5. Измерение информации
- •5.1. Структурный подход к измерению информации
- •5.1.1. Геометрическая мера
- •5.1.2. Комбинаторная мера
- •5.1.3. Аддитивная мера
- •5.2. Статистический подход к измерению информации
- •5.3. Взаимосвязь структурного и статистического подходов к измерению информации
- •5.4. Семантический подход к измерению информации
- •5.4.1. Целесообразность информации
- •5.4.2. Полезность информации
- •5.4.3. Истинность информации
- •6. Качество информации
- •Часть 3. Компьютер как основной элемент информационного процесса
- •7. Структура компьютера и принципы его функционирования
- •8. Виды современных компьютеров
- •9. Структурные элементы компьютера
- •9.1. Память
- •9.1.1. Внутренняя память
- •9.1.2. Внешняя память
- •9.1.2.1. Физическая и логическая структура магнитных дисков
- •9.2. Устройство управления
- •9.3. Арифметико-логическое устройство
- •9.3.1. Структура и принцип действия
- •9.3.2. Формы представления числовых данных
- •9.3.2.1. Формы представления целых чисел
- •9.3.2.2. Формы представления вещественных чисел
- •9.3.3. Коды представления числовых данных
- •9.3.4. Принципы выполнения арифметической операции сложения
- •9.3.4.1. Сложение целых чисел
- •9.3.4.2. Сложение вещественных чисел
- •10. Виды программного обеспечения компьютера
- •Инструментарий технологии программирования.
- •10.1. Системное программное обеспечение
- •Системное по базовое по сервисное по (утилиты) операционные системы операционные оболочки
- •10.2. Пакеты прикладных программ
- •10.3. Инструментарий технологии программирования
- •Инструментарий технологии программирования
- •11. Поколения эвм
- •12. Технология проектирования программ
- •12.1. Формализация задачи
- •12.2. Программирование задачи
- •12.2.1. Разработка алгоритма
- •12.2.1.1. Способы описания алгоритма
- •12.2.1.2. Методы проектирования алгоритмов
- •12.3. Отладка программы
- •13. Эволюция использования компьютеров. Проект эвм пятого поколения
- •Часть 4. Фазы обращения информации
- •14. Структура информационного процесса
- •15. Сбор информации
- •15.1. Методы классификации
- •15.1.1. Иерархическая классификация
- •15.1.2. Фасетная классификация
- •15.2. Методы кодирования
- •15.3. Распознавание и кодирование объектов
- •15.4. Регистрация информации
- •16. Восприятие информации
- •16.1. Сканер как устройство восприятия информации
- •16.1.1. Первичное восприятие и измерение информации
- •16.1.2. Анализ результатов первичного восприятия и измерения
- •16.1.3. Распознавание символов
- •16.2. Восприятие информации клавиатурой
- •16.2.1. Первичное восприятие и измерение
- •16.2.2. Анализ
- •16.2.3. Распознавание
- •17. Передача информации
- •17.1. Модуляция и демодуляция сигнала
- •17.2. Уплотнение сигнала и выделение уплотненного сигнала
- •17.4. Компьютерные сети
- •17.4.1. Топология сетей
- •17.4.2. Методы передачи данных в сетях
- •17.4.3. Организация обмена информацией в сети
- •18. Обработка информации
- •19. Представление информации
- •19.1. Устройства вывода на электронный носитель
- •19.1.1. Мониторы, использующие элт
- •19.1.2. Жидкокристаллические мониторы
- •19.1.3. Плазменные мониторы
- •19.1.4. Технология вывода изображений на мониторы, использующие элт
- •19.1.4.1. Принципы организации текстовых видеорежимов
- •19.1.4.2. Принципы организации графических видеорежимов
- •19.2. Устройства вывода на бумажный носитель
- •19.2.1. Технология формирования цвета
- •19.2.2. Матричные принтеры
- •19.2.3. Струйная технология
- •19.2.4. Термическая технология
- •19.2.5. Электрографическая технология
- •Приложение 1. Определения информатики
- •Приложение 2. Определения информации
- •Приложение 3. Положения комбинаторики, используемые в измерении информации
- •Список литературы
- •Оглавление
- •Часть 1. Информатика и современное общество 6
- •Часть 2. Информация, ее представление и измерение 11
- •Часть 3. Компьютер как основной элемент информационного процесса 81
- •Часть 4. Фазы обращения информации 154
17. Передача информации
Передача информации может выполняться различным образом.
Рассмотрим вначале электронные системы передачи информации. Схема передачи информации представлена на рис. 17.1.
И








С
КИ КК У М ЛС ДМ В ДК ДИ ПС
КС
Рис. 17.1. Схема передачи информации
Здесь сокращения означают следующее:
ИС – источник сообщения. Он регистрирует (фиксирует) информацию на каком-либо носителе, в результате чего образуется сигнал. Может выполнять в целом первую фазу обращения информации, а также криптографическое кодирование. В роли ИС могут выступать сканеры, факсимильные аппараты, клавиатуры, компьютеры и т.д.
КИ – кодер13 источника. Выполняет эффективное кодирование информации в сигнале в случае необходимости. Данный элемент может отсутствовать в схеме.
КК – кодер канала. На него возложены функции помехозащитного кодирования, если передаваемый сигнал подвержен помехам.
У – уплотнитель сигнала. Способствует передаче нескольких сигналов по одной линии связи ЛС. Может отсутствовать в схеме. Уплотнение рассмотрено далее в п. 17.2.
М – модулятор сигнала. Изменяет информационные характеристики сигналов-носителей, накладывая на него дискретный сигнал. Модуляция рассмотрена в п. 17.1.
ЛС – линия связи – физическая среда (например, воздух, электрическое или магнитное поле) и технические средства в ней, который используются для передачи сигнала на расстояние.
ДМ – демодулятор. Выполняет выделение дискретного сигнала из сигнала-носителя. Имеет место в схеме только при наличии модулятора М.
В – устройство выделения уплотненного сигнала. Имеет место в схеме только при наличии уплотнителя У.
ДК – декодер канала. Выявляет и/или исправляет ошибки, допущенные при передаче сигнала по линии связи ЛС. Присутствует в схеме только при наличии кодера канала КК.
ДИ – декодер источника. Декодирует эффективные коды. Присутствует в схеме только при наличии кодера источника КИ.
ПС – получатель сообщения. В его роли может выступать компьютер, принтер, дисплей и т.д.
КС – канал связи.
Технически блоки модулятор (М) и демодулятор (ДМ) реализованы в одном устройстве, которое называется модем (МОдулятор-ДЕМодулятор).
Аналогично блоки кодеров (КИ и КК) и декодеров (ДИ и ДК) реализованы технически в одном устройстве, называемом кодек (КОдер-ДЕКодер).
Блоки уплотнитель У и блок выделения сигнала В образуют мультиплексор.
17.1. Модуляция и демодуляция сигнала
Модуляция - изменение информативных параметров некоторых первичных физических процессов (сигналов), рассматриваемых как носители информации, в соответствии с передаваемой (включаемой и сигнал) информацией.
Виды модуляции связаны с типом сигнала-носителя:
-
сигнал-носитель – фиксированный уровень, например, значение напряжения (рис. 17.2). В этом случае возможна только прямая модуляция, при которой изменение уровня напряжения означает передачу того или иного сигнала.
U(t)
Uн
t
Рис. 17.2. Сигнал-носитель – фиксированный уровень
(t – время, Uн - нормальный уровень напряжения)
Пример 17.1. Выполнить прямую модуляцию дискретного сигнала 01102.
Зададимся следующими модификациями напряжения Uн для передачи двоичной цифры: при уменьшении нормального уровня напряжения на Uм передается двоичный 0, при увеличении нормального уровня на ту же величину передается двоичная 1. Для кодирования повторений цифр зададимся дискретой времени t, в течение которой передается одна цифра. Тогда получим результат, показанный на рис. 17.3.






U(t)
Uм

Uн
Uм




t t t t t
Рис. 17.3. Прямая модуляция для сигнала 01102
-
сигнал-носитель – колебания (рис. 17.4). Этот вид сигнала характеризуется тремя информационными параметрами – амплитудой (имеет величину Uн на рис. 17.4), частотой (1/(2t) на рис. 17.4) и фазой, поэтому возможны три вида модуляции:
-
амплитудная. Изменение амплитуды означает передачу того или иного сигнала.
U(t)
Uн
t t t t t
Рис. 17.4. Сигнал-носитель – колебания
Пример 17.2. Выполнить амплитудную модуляцию для дискретного сигнала 01102, если сигналом-носителем является сигнал рис. 17.4.
Зададимся модификациями амплитуды базового сигнала-носителя: пусть уменьшение амплитуды на величину Uм означает передачу двоичного 0, а увеличение на ту же величину – передачу двоичной 1.
Тогда получим результат, показанный на рис. 17.5.





U(t)

Uм
Uн
Uм





t
Рис. 17.5. Амплитудная модуляция для сигнала 01102
-
частотная. Изменение частоты колебаний передает дискретный сигнал.
Пример 17.3. Выполнить частотную модуляцию для дискретного сигнала 01102. Сигнал-носитель представлен на рис. 17.4.
Пусть увеличение колебаний в период времени T = 2t в 2 раза означает передачу двоичного 0, а увеличение в 3 раза – двоичной 1.
Тогда результат модуляции представлен на рис. 17.6.
U(t)














Uн





t



T T T T
Рис. 17.6. Частотная модуляция для сигнала 01102
-
.фазовая. Смена фазы передает дискретный сигнал.
Пример 17.4. Выполнить фазовую модуляцию для дискретного сигнала 01102. Сигнал-носитель представлен на рис. 17.4.
Пусть сдвиг по фазе на 90 означает передачу двоичной 1, отсутствие сдвига – двоичного 0. Тогда результат модуляции представлен на рис. 17.7.
U(t)
Uн
t
Рис. 17.7. Фазовая модуляция для сигнала 01102
-
сигнал-носитель – импульсы (рис. 17.8).
U(t)
Uн
t
T T T
Рис. 17.8. Сигнал-носитель – импульсы
Аналогично колебаниям этот вид сигнала позволяет выполнять три вида модуляции:
-
амплитудно-импульсная. Передача дискретного сигнала связана с изменением амплитуды импульсов.
Пример 17.5. Выполнить амплитудно-импульсную модуляцию для дискретного сигнала 01102. Сигнал-носитель представлен на рис. 17.8.
Зададимся модификациями амплитуды базового сигнала-носителя: пусть уменьшение амплитуды импульса на величину Uм означает передачу двоичного 0, а увеличение на ту же величину – передачу двоичной 1.
Тогда результат модуляции представлен на рис. 17.9.
U(t)






















U
м Uн
Uм





t
T T T T
Рис. 17.9. Амплитудно-импульсная модуляция для сигнала 01102
-
частотно-импульсная. Передача дискретного сигнала связана с изменением частоты импульсов.
Пример 17.6. Выполнить частотно-импульсную модуляцию для сигнала 01102. Сигнал-носитель представлен на рис. 17.8.
Пусть увеличение частоты импульсов в период времени T в 2 раза означает передачу двоичного 0, а увеличение в 3 раза – двоичной 1.
Тогда результат модуляции представлен на рис. 17.10.











U(t)









Uн
t
T T T T
Рис. 17.10. Частотно-импульсная модуляция для сигнала 01102
-
время-импульсная. Передача дискретного сигнала связана с изменением продолжительности импульса .
Пример 17.7. Выполнить время-импульсную модуляцию для сигнала 01102. Сигнал-носитель представлен на рис. 17.8.
Пусть увеличение продолжительности импульса на время означает передачу двоичной 1, а уменьшение на ту же величину – передачу двоичного 0.
Тогда результат модуляции представлен на рис. 17.11.






U(t)










Uн






- +
+
-
Рис. 17.11. Время-импульсная модуляция для сигнала 01102
Демодуляция – восстановление величин, вызвавших изменение параметров носителей при модуляции. Выполняется на принимающей стороне при известных условиях модуляции на передающей стороне.
