Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ботаника на ПЕЧАТЬ.doc
Скачиваний:
11
Добавлен:
27.10.2018
Размер:
284.16 Кб
Скачать

28. Эволюционное значение сине-зеленых водорослей (отдел Cyanophyta). Строение и биохимические особенности.

Считается, что отдел Cyanophyta (Cyanobacterya) насчитывает около 2000 видов. Возникли эти организмы свыше 3 млрд лет назад.Предполагается, что изменения в составе атмосфнры архея и обогащение ее кислородом связаны с фотосинтетической активностью цианобактерий.

Синезеленые – самые древние из водорослей и древнейшие представители мира растений. Включают 150 родов, объединяющих 2000 видов. Имеют прокариотическое строение. Ядерный материал не отграничен мембраной от остального содержимого клетки, внутренний слой клеточной оболочки состоит из муреина. Характерна сине-зеленая окраска, но встречается розовая и почти черная, что связано с наличием пигментов: хлорофилла а, фикобилинов (голубого - фикоцианина и красного - фикоэитрина) и каротиноидов. Среди сине-зеленых водорослей имеются одноклеточные (род Chroococcus), колониальные (род Nostoc) и многоклеточные нитчатые (род Oscillatoria) организмы, обычно микроскопические, реже образующие шарики, корочки и кустики размером до 10 см. Некоторые нитчатые сине-зеленые водоросли способны передвигаться путем скольжения. Протопласт состоит из внешнего окрашенного слоя – хроматоплазмы – и бесцветной внутренней части – центроплазмы. В хроматоплазме находятся ламеллы (пластинки), осуществляющие фотосинтез: они расположены концентрическими слоями вдоль оболочки. Центроплазма содержит ядерное вещество, рибосомы, запасные вещества (гранулы волютина, зерна цианофицина с липопротеидами) и тельца, состоящие из гликопротеидов; у планктонных видов имеются газовые вакуоли. Хлоропласты и митохондрии отсутствуют. Поперечные перегородки нитчатых сине-зеленых водорослей снабжены плазмодесмами. Некоторые нитчатые сине-зеленые водоросли имеют гетероцисты – бесцветные клетки, изолированные от вегетативных клеток «пробками» в плазмодесмах. Размножаются сине-зеленые водоросли делением (одноклеточные) и гормогониями – участками нитей (многоклеточные). Кроме того, для размножения служат: акинеты – неподвижные покоящиеся споры, образующиеся целиком из вегетативных клеток; эндоспоры, возникающие по несколько в материнской клетке; экзоспоры, отчленяющиеся с наружной стороны клеток и нанноциты – мелкие клетки, появляющиеся в массе при быстром делении содержимого материнской клетки. Полового процесса у сине-зеленых водорослей нет, однако наблюдаются случаи перекомбинирования наследственных признаков посредством трансформации. Сине-зеленые водоросли входят в состав планктона и бентоса пресных вод и морей, живут на поверхности почвы, в горячих источниках, на снегу; ряд видов обитает в известковом субстрате, некоторые сине-зеленые водоросли – компоненты лишайников и симбионты простейших животных и наземных растений (мохообразных и цикадовых). В наибольших количествах сине-зеленые водоросли развиваются в пресных водах, иногда вызывая токсическое цветение воды в водохранилищах, что служит причиной гибели морских организмов, птиц. В определенных условиях массовое развитие этих водорослей способствует образованию лечебных грязей. В некоторых странах (Китай) ряд видов (носток, спирулина и др.) используют в пищу. Предпринимаются попытки массового культивирования водорослей для получения кормового и пищевого белка. Некоторые сине-зеленые водоросли усваивают молекулярный азот, обогащая им почву.

Историческая роль. Это старейшая группа, в ископаемом состоянии известны с докембрия. Благодаря деятельности сине-зеленых водорослей появился кислород. В конце протерозоя они утратили свое доминирующее значение.

29. Раскройте сущность процесса двойного оплодотворения у покрытосеменных. Каково эволюционное значение?

Эволюционным отличием покрытосеменных от остальных отделов растений является появление особого органа размножения – цветка. Исключительная роль цветка связана с тем, что в нем полностью совмещены все процессы бесполого и полового размножения.В обоеполом цветке осуществляются микро- и мегаспорогенез,опыление и оплодотворение и начальные этапы развития зародыша.Особенности строения цветка обеспечивают осуществление этих функций с наименьшими затратами пластических веществ и энергии.

Женским органом размножения, находящимся внутри цветка, является гинецей – совокупность пестиков, мужским – андроцей(совокупность тычинок). В зависимости от наличия обоих этих образований различают однополые и обоеполые цветки.Филогенетически тычинка считается видоизмененным микроспорофиллом.Их количество варьирует от одной до нескольких сотен.

Каждая тычинка состоит из суженной нитевидной части – тычиночной нити и обычно расширенной части – пыльника. Пыльник имеет две половинки, соединенных между собой связником. Каждая половинка несет два гнезда-микроспорангия. В гнездах тычинок осуществляются микроспорогенез и микрогаметогенез. В результате формируется пыльцевое зерно, содержащее обычно две клетки – маленькую генеративную и более крупную вегетативную. Генеративная клетка делится однократно и образует 2 мужских гаметы – спермия.Вегетативная клетка при прорастании на рыльце дает начало пыльцевой трубке.

Пестик образуется из плодолистиков, которые филогенетически соответствуют мегаспорофиллам. Наиболее существенная для оплодотворения часть пестика- завязь - образует уникальную структуру, напоминающую замкнутый сосуд, где развиваются надежно защищенные семязачатки. Кроме завязи, в состав пестика входят вытянутая часть – столбик –и верхушечная – рыльце.Рыльце пестика - уникальная структура, предназначенная для восприятия пыльцы. В семязачатках, содержащихся в завязи, происходит мегаспорогенез, мегагаметогенез и процесс оплодотворения. Семязачаток после оплодотворения заключенной в нем яйцеклетки(реже без опл-я) развивается в семя. Нуцеллус занимает центральную часть семязачатка и в нем развивается зародышевый мешок.

Для осуществления оплодотворения необходимы зрелая жизнеспособная пыльца, попавшая на рыльце пестика, и сформировавшийся зародышевый мешок в семязачатке. Оплодотворению предшествует прорастание пыльцевого зерна. Оно начинается с разбухания зерна на поверхности рыльца и выхода из апертуры пыльцевого зерна пыльцевой трубки. По мере роста пыльцевой трубки в нее переходят ядро вегетативной клетки и оба спермия. Пыльцевая трубка, как правило, проникает в нуцеллус через микропиле семязачатка. Проникнув в зародышевый мешок, пыльцевая трубка разрывается(под действием разницы осмотического давления в ней и в нуцеллусе), и все содержимое изливается внутрь. Один из спермиев сливается с яйцеклеткой и образуется диплоидная зигота, дающая затем начало зародышу. Второй спермий сливается со вторичным ядром, располагающимся в центре зародышевого мешка, тем самым образуя триплоидное ядро, развивающееся затем в специальную питательную ткань – эндосперм. Это и есть двойное оплодотворение. Прочие клетки зародышевого мешка либо разрушаются при проникновении пыльцевой трубки, либо дегенерируют.

Биологический смысл двойного оплодотворения весьма велик. В отличие от голосеменных, где довольно мощный гаплоидный эндосперм развивается независимо от процесса оплодотворения, у покрытосеменных триплоидный эндосперм образуется лишь в случае оплодотворения. Этим достигается существенная экономия энергетических и пластических ресурсов.

Оплодотворение – один из важнейших процессов полового размножения. Его можно подразделить на три фазы: опыление, прорастание пыльцы и рост пыльцевой трубки в тканях пестика и собственно оплодотворение, то есть образование зиготы.

Процессу оплодотворения в цветке предшествует опыление — перенос пыльцы с пыльников на рыльце пестика цветка того же или близкого вида, обеспечивающий прорастание пыльцы и возможность оплодотворения. Различают два типа опыления - самоопыление и перекрестное опыление.

При самоопылении на рыльце пестика попадает пыльца того же цветка, опыление происходит в пределах одного цветка. При этом материнские и отцовские наследственные свойства очень близки, поэтому возникшее в результате самоопыления потомство из семян по наследственным признакам более однородно.

При перекрестном опылении на рыльце пестика переносится пыльца с цветков других растений того же вида. Хотя материнские и отцовские экземпляры при этом и относятся к одному виду, но имеют индивидуальные отличия, поэтому семенное потомство при перекрестном опылении более разнообразно по наследственным признакам и обычно более жизненно.

Перенос пыльцы при перекрестном опылении производится с помощью ветра, насекомых, птиц, воды.

Для осуществления оплодотворения необходимы два условия: зрелая жизнеспособная пыльца, попавшая на рыльце пестика, и сформировавшийся зародышевый мешок в семязачатке. Оплодотворению предшествует прорастание пыльцевого зерна. Оно начинается с разбухания зерна на поверхности рыльца и выхода из апертуры пыльцевого зерна пыльцевой трубки. В густой цитоплазме кончика пыльцевой трубки идут интенсивные физиологические процессы, вследствие которых несколько размягчаются ткани рыльца и столбика, в которые внедряется пыльцевая трубка. По мере роста пыльцевой трубки в нее переходят ядро вегетативной клетки и оба спермия. В огромном большинстве случаев пыльцевая трубка проникает в мегаспорангий (нуцеллус) через микропиле семязачатка, реже – иным образом. Проникнув в зародышевый мешок, пыльцевая трубка разрывается под действием разницы осмотического давления в ней и давления в нуцеллусе, и все содержимое изливается внутрь. Один из спермиев сливается с яйцеклеткой и образуется диплоидная зигота, дающая затем начало зародышу. Второй спермий сливается со вторичным ядром, располагающимся в центре зародышевого мешка, что приводит к образованию триплоидного ядра, развивающегося затем в специальную питательную ткань – эндосперм (от греч. эндон – внутри, сперма – семя). Весь этот процесс получил название двойного оплодотворения. Он впервые описан в 1898 году выдающимся русским цитологом и эмбриологом С. Г. Навашиным. Прочие клетки зародышевого мешка – антиподы и синергиды – либо разрушаются при проникновении пыльцевой трубки, либо дегенерируют.

Значение двойного оплодотворения весьма велико. В отличие от голосеменных, где довольно мощный гаплоидный эндосперм развивается независимо от процесса оплодотворения, у покрытосеменных триплоидный эндосперм образуется лишь в случае оплодотворения. С учетом гигантского числа поколений этим достигается существенная экономия энергетических и пластических ресурсов.

Зигота и первичная клетка эндосперма, имея двойную наследственность, приобретают большую жизнеспособность и приспособляемость к условиям существования. Отсюда понятна роль многочисленных приспособлений в морфологии и физиологии цветка, направленных на обеспечение перекрестного опыления. В зародышевый мешок могут проникать несколько пыльцевых трубок. Однако спермии этих трубок в оплодотворении, как правило, не участвуют и дегенерируют. Слияние спермиев с ядрами женского гаметофита предшествует деконденсация хроматина в ядрах.