Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
29
Добавлен:
30.03.2016
Размер:
3.52 Mб
Скачать

Receptors

might be a third component intervening between the two, communicating the message from the activated receptors to the catalytic unit (see Figure 4.1, page 83). This transducing component is now known to be a GTP-binding protein.

Intracellular 7TM receptor domains and signal transmission

The onward signals for all these receptors are carried by conformational perturbations conveyed to the loops and the C-terminal chain exposed in the cytosol. Of these, the third intracellular loop (connecting the E and F chains), which is rather extended in most 7TM-receptor molecules, and also the C-terminal tail are considered to be of particular importance.

Adrenaline (yet again)

It was ever thus. The cab-choked street, the PR men clutching their ulcers, the jewellery displayed like medals on the chest of a Soviet general, the snoozing men from Wall Street, the Sardi’s supper entrance. As always in any enterprise, Americans travel hopefully, fuelled by a thirst for adrenalin not experienced by most Europeans.

John Osborne, Almost a Gentleman

(Faber & Faber, London, 1991)

References

1. Cannon WB. Bodily changes in pain, hunger, fear and rage. An account of researches into the function of emotional excitement Reprinted, 1963. New York: Harper Torch Books; 1929.

2. Starling EH.  The wisdom of the body. Brit Med J. 1923;2:685–690.

3. Strosberg AD. Structure and function of the 3-adrenergic receptor. Annu Rev Pharmacol Tox. 2000;37:421–450.

4. Hanoune J.  The adrenal medulla. In: Baulieu E-E, Kelly PA, eds. Hormones: From Molecules to Disease. London: Chapman & Hall; 1990:309–333.

5. Weiland GA, Minneman KP, Molinoff PB. Fundamental difference between the molecular interactions of agonists and antagonists with the-adrenergic receptor. Nature. 1979;281:114–117.

6. Sellin LC, McArdle JJ. Multiple effects of 2,3-butanedione monoxime. Pharmacol Toxicol. 1994;74:305–313.

7. van Helden HP, Busker RW, Melchers BP, Bruijnzeel PL. Pharmacological effects of oximes: how relevant are they?. Arch Toxicol 1996;70:779–786.

8. Bernard C. Analyse physiologique des propriétés des systèmes musculaire et nerveux au moyen du curare. C R hebd Acad Sci. 1856;43:829.

73

Signal Transduction

9. Langley JN. On the reaction of nerve cells and nerve endings to certain poisons chiefly as regards the reaction of striated muscle to nicotine and to curare. J Physiol (Lond). 1905;33:374–473.

10.Burden SJ, Sargent PB, McMahan UJ. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979;82:412–425.

11.Changeux JP, Kasai M, Lee CY. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970;67:1241–1247.

12.Meunier JC, Sealock R, Olsen R, Changeux JP. Purification and properties of the cholinergic receptor protein from Electrophorus electricus electric tissue. Eur J Biochem. 1974;45:371–394.

13.Olsen RW, Meunier JC, Changeux JP. Progress in the purification of the cholinergic receptor protein from Electrophorus electricus by affinity chromatography. FEBS Lett. 1972;28:96–100.

14.Neher E, Sakman B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260:799–802.

15.Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechansim of the acetylcholine receptor pore. Nature. 2003;423:949–955.

16.Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol. 2005;346:967–989.

17.Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature. 1985;318:618–621.

18.Doyle DA, Cabral JM, Pfuetzner RA, Cohen SL, Gulbis JM, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K conduction and selectivity. Science. 1998;280:69–77.

19.Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998;282:2220–2226.

20.Le Novere N, Changeux JP. The ligand-gated ion channel database. Nucleic Acids Res. 1999;27:340–342.

21.Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–132.

22.Heidmann T, Changeux JP. Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. Proc Natl Acad Sci U S A. 1984;81:1897–1901.

23.Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der OJ, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligandbinding domain of nicotinic receptors. Nature. 2001;411:269–276.

24.Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron. 2004;41:907–914.

74

Receptors

25.Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiasmic nucleus and its role in diurnal rhythmicity. Nature. 1997;387:598–603.

26.Akabas MH, Kaufmann C, Archdeacon P, Karlin A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the subunit. Neuron. 1994;13:919–927.

27.Platt SR. The role of glutamate in central nervous system health and disease - a review. Vet J. 2007;173:278–286.

28.Drews J. Drug discovery: a historical perspective. Science. 2003;287: 1961-1964.

29.Ohguro H, Palczewsi K, Ericsson LH, Walsh KA, Johnson RS. Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry. 1993;32:5718–5724.

30.Fredericks ZL, Pitcher JA, Lefkowitz RJ. Identification of the G-protein- coupled receptor kinase phosphorylation sites in the human2-adrenergic receptor. J Biol Chem. 1999;271:13796–13803.

31.Henderson R, Unwin PN. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975;257:28–32.

32.Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-

resolution crystal structure of an engineered human 2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–1265.

33.Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK. GPCR

engineering yields high-resolution structural insights into 2-adrenergic receptor function. Science. 2007;318:1266–1273.

34.Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF,

Weis WI, Kobilka BK. Crystal structure of the human 2 adrenergic G-protein-coupled receptor. Nature. 2007;450:383–387.

35.Ranganathan R. Signaling across the cell membrane. Science. 2007;318:1253–1254.

36.Sprang SR. Structural biology: a receptor unlocked. Nature. 2007;450: 355–356.

37.Palczewsi K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein coupled receptor. Science. 2003;289:739–745.

38.Archer E, Maigret B, Escrieut C, Pradayrol L, Fourmy D. Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors?

Trends Pharmacol Sci 2003;24:36–40.

39.Robison GA, Butcher RW, Sutherland EW. Adenyl cyclase as an adrenergic receptor. Ann N Y Acad Sci. 1967;139:703–723.

75

Signal Transduction

40.Ahlquist RP. Adrenergic receptors: a personal and practical view. Perspect Biol Med. 1973;17:119–122.

41.Ji TH, Grossmann M, Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem. 1998;273:17299–17302.

42.Attwood TK, Findlay JB. Fingerprinting G-protein-coupled receptors. Protein Eng. 1994;7:195–203.

43.Kolakowski LF. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2:1–7.

44.Fredriksson R, Lagerstrom MC, Lundin L-G, Schiöth HB. The G-protein- coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–1272.

45.Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics. 2006;88: 263–273.

46.Ostrowski J, Kjelsberg MA, Caron MG, Lefkowitz RJ. Mutagenesis of the

2-adrenergic receptor: how structure elucidates function. Annu Rev Pharmacol Toxicol. 1992;32:167–183.

47.Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2 )-sensing receptor from bovine parathyroid. Nature. 1993;366:575–580.

48.Ward DT, Brown EM, Harris HW. Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J Biol Chem. 1998;273:14476–14483.

49.Pin J-P, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacology & Therapeutics. 2003;98:325–354.

50.Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TKH, Wheaton VI, Turck CW, Coughlin SR. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1994;269:32522–32527.

51.Furman MI, Liu L, Benoit SE, Becker RC, Barnard MR, Michelson AD. The cleaved peptide of the thrombin receptor is a strong platelet agonist. Proc Natl Acad Sci USA. 1998;95:3082–3087.

52.Dery O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol. 1998;274C:1429–1452.

53.Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese-RV J, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–694.

76

Receptors

54.Hara K, Yonezawa K, Sakaue H, Ando A, Kotani K, Kitamura T, Kitamura Y, Ueda H, Stephens L, Jackson TR. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci. 1994;91:7415–7419.

55.Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, Moffett S. A protective role for proteaseactivated receptors in the airways. Nature. 1999;398:156–160.

56.Trejo J, Hammes SR, Coughlin SR. Termination of signaling by proteaseactivated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci USA. 1998;95:13698–13702.

57.Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Therapeut. 2004;103:21–80.

58.Stacey M, Lin H-H, Gordon S, McKnight AJ. LNB-TM7, a group of seventransmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci. 2000;25:284–288.

59.Stacey M, Chang G-W, Davies JQ, Kwakkenbos MJ, Sanderson RD, Gordon S,

Lin H-H. The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood. 2003;102:2916–2924.

60.Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, Ushkaryov YA. -latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997;272:21504–21508.

61.Langley JN. On the physiology of the salivary secretion: Part II. On the mutual antagonism of atropin and pilocarpin, having especial

reference to their relations in the sub-maxillary gland of the cat. J Physiol. 1878;1:339–369.

62.Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M. Inverse agonist activity of -adrenergic antagonists. Mol Pharmacol. 1994;45:490-499.

63.Varma DR, Shen H, Deng XF, Peri KG, Chemtob S, Mulay S. Inverse agonist activities of -adrenoceptor antagonists in rat myocardium.

Br J Pharmacol. 1999;127:895–902.

64.Varma DR. Ligand-independent negative chronotropic responses of rat and mouse right atria to -adrenoceptor antagonists. Can J Physiol. 1999;77:943–949.

65.Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR, Apparsundaram S, Hyek MF, Kennakin TB, Allen LF, Lefkowitz RJ. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the -adrenoceptor. Nature. 1995;374: 272–276.

66.Seeman P, Guan HC, Van-Tol HH. Dopamine D4 receptors elevated in schizophrenia. Nature. 1993;365:441–445.

77

Signal Transduction

67.Marzella PL, Hill C, Keks N, Singh B, Copolov D. The binding of both [3H]nemonapride and [3H]raclopride is increased in schizophrenia. Biol Psychiatry. 1997;42:648–654.

68.Stefanis NC, Bresnick JN, Kerwin RW, Schofield WN, McAllister G. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

Brain Res Mol Brain Res. 1998;53:112–119.

69.Griffon N, Pilon C, Sautel F, Schwartz JC, Sokoloff P. Antipsychotics with inverse agonist activity at the dopamine D3 receptor. J Neural Transm. 1996;103:1163–1175.

70.Malmberg A, Mikaels A, Mohell N. Agonist and inverse agonist activity at the dopamine D3 receptor measured by guanosine 5 - -thio- triphosphate-35S- binding. J Pharmacol Exp Ther. 1998;285:119–126.

71.Hall DA, Strange PG. Evidence that antipsychotic drugs are inverse agonists at D2 dopamine receptors. Br J Pharmacol. 1997:731–736.

72.Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392:509–512.

73.Gardella TJ, Luck MD, Jensen GS, Schipani E, Potts JT, Juppner H. Inverse agonism of amino-terminally truncated parathyroid hormone (PTH) and PTH-related peptide (PTHrP) analogs revealed with constitutively active mutant PTH/PTHrP receptors. Endocrinology. 1996;137:3936–3941.

74.Atlas D, Levitzki A. Tentative identification of -adrenoceptor subunits. Nature. 1978;272:370–371.

75.Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao W-J, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K,

Laz T, Smith KE, Nagarthnam D, Noble SA, Branchek TA, Gerald C. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature. 1998;396:670–674.

76.White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. Heterodimerization is required for the formation of a functional GABAB receptor. Nature. 1998;396:679–682.

77.Kaupmann K, Malitchek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher

J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396:683–687.

78.Margeta-Mitrovic M, Jan YN, Jan LY. Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc Natl Acad Sci USA. 2001;98:14643–14648.

79.Margeta-Mitrovic M, Jan YN, Jan LY. Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc Natl Acad Sci USA. 2001;98:14649–14654.

80.Romano C, Yang WL, O’Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem. 1996;271:28612–28616.

81.Hebert TE, Moffett S, Morello J-P, Loisel TP, Bichet DG, Barrett C, Bouvier M. A peptide derived from a 2-adrenergic receptor transmembrane

78

Receptors

domain inhibits both receptor dimerization and activation. J Biol Chem. 1996;271:16384–16392.

82.Cvejic S, Devi LA. Dimerization of the opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272:26959–26964.

83.Zeng FY, Wess J. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem. 1999;274:19487–19497.

84.Trettel F, Di Bartolomeo S, Lauro C, Catalano M, Ciotti MT, Limatola C. Ligand-independent CXCR2 dimerization. J Biol Chem. 2003;278: 40980–40988.

85.Kaykas A, Yang-Snyder J, Heroux M, Shah KV, Bouvier M, Moon RT. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nat Cell Biol. 2004;6:52–58.

86.Rodriguez-Frade JM, del Real G, Serrano A, Hernanz-Falcon P, Soriano SF, Vila-Coro AJ, de Ana AM, Lucas P, Prieto I, Martinez A, Mellado M. Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J. 2004;23:66–76.

87.Hansen JL, Sheikh SP. Functional consequences of 7TM receptor dimerization. Eur J Pharm Sci. 2004;23:301–317.

88.Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30–34.

89.Birnbaumer L, Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969;244:3477–3482.

90.Bar HP, Hechter O. Adenyl cyclase and hormone action. I. Effects of adrenocorticotropic hormone, glucagon, and epinephrine on the plasma membrane of rat fat cells. Proc Natl Acad Sci USA. 1969;63:350–356.

91.Rodbell M. The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr Top Cell Regulation. 1992;32:1–47.

92.Sattin A, Rall TW, Zanella J. Regulation of cyclic adenosine 3 ,5 - monophosphate levels in guinea-pig cerebral cortex by interaction of-adrenergic and adenosine receptor activity. J Pharmacol Exp Ther. 1975;192:22–32.

93.Schulster D, Orly J, Seidel G, Schramm M. Intracellular cyclic AMP production enhanced by a hormone receptor transferred from a different cell: -adrenergic responses in cultured cells conferred by fusion with turkey erythrocytes. J Biol Chem. 1978;253:1201–1206.

79

Соседние файлы в папке Gompert Signal Transd