- •Федеральное агентство по образованию
- •Предисловие
- •1. Ожижение природного газа Введение
- •1.1. Характеристика природных газов, используемых для получения сжиженного природного газа
- •Составы газовых и газоконденсатных месторождений ряда газоносных и нефтегазовых регионов России
- •Состав природных (попутных нефтяных) газов
- •Состав пг некоторых зарубежных месторождений
- •Показатели, которым должны удовлетворять газы, транспортируемые по магистральным газопроводам
- •1.2. Очистка и осушка природных газов
- •Физические свойства основных компонентов природного газа
- •Показатели качества сжиженного природного газа
- •Теплофизические характеристики адсорбентов и параметры их регенерации
- •1.3. Сжижение метана
- •Результаты расчетов теоретического цикла ожижения газа с простым дросселированием
- •Сравнение данных по хT и lT для установок ожижения метана и воздуха, работающих по теоретическому циклу с простым дросселированием и внешним источником охлаждения
- •Результаты расчета детандерного цикла ожижения метана при различных значениях Gд
- •Сводные данные расчета установки ожижения метана
- •Сводные данные расчета установки ожижения метана
- •Сводные данные расчета установки ожижения метана
- •Сравнение значений х для ряда циклов ожижения метана
- •Основные результаты расчетного анализа установок получения спг, работающих по различным циклам ожижения
- •Циклы ожижения метана
- •Значения основных параметров криопродуктов, используемых в трехкаскадной установке ожижения пг
- •Параметры узловых точек для потоков в отдельных циклах каскада
- •Сводные данные по расчету процесса прямоточной конденсации в водяном холодильнике
- •Сводные данные по определению материальных потоков, выходящих из водяного холодильника и теплообменников то1–то3
- •Параметры основных точек потоков, проходящих через аппараты ожижителя
- •Сводные данные по расчету теплообменников то2–то4 ожижителя пг
- •1.4. Ожижители природного газа и крупные заводы по производству сжиженного природного газа
- •Сравнительная характеристика ожижителей пг, работающих по дроссельному циклу с включением холодильной машины или внешнего холодильного контура на сха
- •Сравнительные технико-экономические характеристики установок производства спг на грс и агнкс, приведенные к производительности 600 кг спг/ч
- •Техническая характеристика установок ожижения пг на базе внешних холодильных циклов
- •Техническая характеристика ожижителей пг на базе детандерных циклов
- •Некоторые из ожижителей пг, созданные фирмой «Линде» и введенные в эксплуатацию в сша
- •Список литературы
- •2.Утилизация холода сжиженного природного газа при регазификации Введение
- •2.1. Основные направления утилизации холода сжиженного природного газа
- •2.2. Применение холода сжиженного природного газа для ожижения газообразных криопродуктов
- •2.3. Использование холода сжиженного природного газа для повышения эффективности работы отдельных узлов вру
- •2.4. Воздухоразделительные установки для получения жидких криопродуктов, использующие холод сжиженного природного газа
- •Основные показатели установок с азотным циркуляционным циклом, предназначенных для получения продуктов разделения воздуха в жидком виде
- •Данные, характеризующие эффективность применения процесса низкотемпературного сжатия в вру, использующих холод спг
- •Данные, характеризующие работу вру для одновременного получения жидких и газообразных криопродуктов при различных режимах работы
- •ХарактеристикаВру с использованием холода спг, эксплуатирующихся в Японии
- •2.5. Утилизация холода сжиженного природного газа в установках разделения воздуха, получающих газообразные криопродукты
- •Список литературы
- •Заключение
- •Содержание
- •196006, Санкт-Петербург, ул. Коли Томчака, дом 28
Сводные данные расчета установки ожижения метана
|
ад |
Т =Т7 –Т3, К |
Тmin, К |
Gд, |
х, |
|
0,70 0,75 0,80 |
22,5 26,1 27,0 |
8,0 6,0 8,5 |
0,492 0,498 0,526 |
0,138 0,146 0,160 |
Сравнивая результаты расчетов ожижителей метана, принципиальные схемы которых приведены на рис. 1.3.7, а и 1.3.7, б, видно, что при одних и тех же значениях ηад для ожижителей, в которых метан подается на детандер после предварительного охлаждения, доля газа, расширяемого в детандере, приблизительно в 1,3–1,5 раза больше для схемы ожижителя, приведенной на рис. 1.3.7, б. При этом, несмотря на то, что удельная холодопроизводительность детандера для каждого значения ηад, равная разности энтальпий i2 – i7, уменьшается по сравнению с аналогичным перепадом энтальпии для детандера в схеме ожижителя, показанной на рис. 1.3.7, а, увеличение доли Gд обеспечивает более высокое значение х для одних и тех же значений ηад. Кроме того, по данным, приведенным в табл. 1.3.5, видно, что для каждого значения ηад, ΔТmin для схемы ожижителя, приведенной на рис. 1.3.7, б, в 2–2,5 раза больше, чем для схемы ожижителя, приведенной на рис. 1.3.7, а. Уменьшение ΔТmin до значений, приведенных в табл. 1.3.4, дает возможность еще несколько улучшить показатели установки, приведенные в табл. 1.3.5.
Если варианты схем ожижителей метана, представленные на рис. 1.3.7, а, б, практически не требуют энергетических затрат, то в схеме ожижителя, приведенной на рис. 1.3.7, в, где для предварительного охлаждения используется холодильная машина, потребуются дополнительные энергозатраты. Кроме того, ее включение в схему ожижителя вызывает дополнительные капиталовложения.
В этой связи целесообразно оценить тот эффект, который может быть получен от введения в схему ожижителя дополнительной ступени охлаждения – ступени с внешним источником охлаждения.
С этой целью были выполнены расчеты по определению Gд и х для установки, приведенной на рис. 1.3.7, в, для пяти температурных уровней предварительного охлаждения в интервале температур от 270 до 220 К.
В качестве исходных уравнений для определения Gд и х использовались уравнения, аналогичные уравнениям (1.3.20) – (1.3.22) и (1.3.17) – (1.3.19), которые при принятых обозначениях узловых точек схемы ожижителя, приведенного на рис. 1.3.7, в, записываются в виде
;
(1.3.23)
;
(1.3.24)
.
(1.3.25)
В дополнение к уравнениям (1.3.24) и (1.3.25), позволяющим определить величины Gд и х, в этом случае добавляется уравнение, дающее возможность оценить изменение и величину удельной холодопроизводительности холодильной машины qх.м, где
qх.м = i2 – i3. (1.3.26)
В свою очередь, i2 определяется из теплового баланса теплообменника ТО1
(i1
– i2)
+
= (1 – х)
(i10
– i9).
(1.3.27)
В табл. 1.3.6 приведены данные по расчетным величинам Gд ихсхемы ожижителя метана, показанной на рис. 1.3.7, в. Величины основных параметров были такими же, как и при расчете предыдущих вариантов схем ожижителей, показанных на рис. 1.3.7. Расчеты были выполнены лишь для одного значения ηад = 0,70. Результаты расчетов установки (см. рис. 1.3.7, в) в зависимости от изменения температурыТх.м при ηад = 0,70 приведены в табл. 1.3.6.
Таблица 1.3.6
