
- •ЛЕКЦИЯ 1
- •2. Электричество и магнетизм
- •2.1. Электростатика
- •2.1.1. Электрический заряд. Закон сохранения заряда
- •2.1.2. Взаимодействие электрических зарядов в вакууме. Закон Кулона
- •2.1.3. Электростатическое поле. Напряженность электростатического поля
- •2.1.4. Сложение электростатических полей. Принцип суперпозиции
- •2.1.5. Электростатическое поле диполя
- •2.1.6. Взаимодействие двух диполей
- •ЛЕКЦИЯ 2
- •2.1.7. Силовые линии электростатического поля
- •2.1.8. Поток вектора напряженности
- •2.1.9. Теорема Остроградского-Гаусса
- •ЛЕКЦИЯ 3
- •2.1.11. Теорема о циркуляции вектора поля
- •2.1.12. Работа сил электростатического поля. Потенциальная энергия
- •ЛЕКЦИЯ 4
- •2.1.13. Связь между напряженностью и потенциалом
- •2.1.14. Безвихревой характер электростатического поля
- •2.1.15. Силовые линии и эквипотенциальные поверхности
- •2.1.16. Расчет потенциалов простейших электростатических полей
- •ЛЕКЦИЯ 5
- •2.1.17. Поляризация диэлектриков
- •2.1.18. Различные виды диэлектриков
- •2.1.19. Вектор электрического смещения
- •ЛЕКЦИЯ 6
- •2.1.21. Изменение D и E на границе раздела двух диэлектриков
- •2.1.22. Напряженность и потенциал электростатического поля в проводнике
- •2.1.23. Определение напряженности поля вблизи поверхности заряженного проводника
- •2.1.24. Конденсаторы
- •ЛЕКЦИЯ 7
- •2.1.25. Энергия электростатического поля
- •2.1.26. Причины электрического тока
- •2.1.27. Плотность тока
- •2.1.28. Уравнение непрерывности
- •2.1.29. Сторонние силы и ЭДС
- •ЛЕКЦИЯ 8
- •2.1.30. Закон Ома для неоднородного участка цепи
- •2.1.31. Закон Ома в дифференциальной форме
- •2.1.32. Работа и мощность тока. Закон Джоуля – Ленца
- •2.1.33. КПД источника тока
- •ЛЕКЦИЯ 9
- •2.2. Электромагнетизм
- •2.2.1. Магнитные взаимодействия
- •2.2.2. 3акон Био–Савара–Лапласа
- •ЛЕКЦИЯ 10
- •2.2.3. Магнитное поле движущегося заряда
- •2.2.4. Напряженность магнитного поля
- •2.2.5. Магнитное поле прямого тока
- •2.2.6. Магнитное поле кругового тока
- •ЛЕКЦИЯ 11
- •2.2.7. Теорема Гаусса для вектора магнитной индукции
- •2.2.8. Закон Ампера
- •2.2.9. Взаимодействие двух параллельных проводников с током
- •ЛЕКЦИЯ 12
- •2.2.10. Воздействие магнитного поля на рамку с током
- •2.2.11. Сила Лоренца
- •2.2.12. Циркуляция вектора магнитной индукции
- •ЛЕКЦИЯ 13
- •2.2.13. Магнитное поле соленоида
- •2.2.14. Магнитное поле тороида
- •2.2.15. Работа по перемещению проводника с током в магнитном поле
- •ЛЕКЦИЯ 14
- •2.2.16. Опыты Фарадея. Индукционный ток. Правило Ленца
- •2.2.17. Величина ЭДС индукции
- •2.2.18. Природа ЭДС индукции
- •ЛЕКЦИЯ 15
- •2.2.19. Циркуляция вектора напряженности вихревого электрического поля
- •2.2.20. Явление самоиндукции
- •2.2.21. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность
- •ЛЕКЦИЯ 16
- •2.2.22. Взаимная индукция
- •2.2.23. Индуктивность трансформатора
- •2.2.24. Энергия магнитного поля
- •2.2.25. Магнитное поле в веществе
- •ЛЕКЦИЯ 17
- •2.2.26. Диамагнетики и парамагнетики в магнитном поле
- •2.2.27. Ферромагнетики
- •2.2.28. Закон полного тока
- •ЛЕКЦИЯ 18
- •2.2.29. Ток смещения
- •2.2.30. Единая теория электрических и магнитных явлений. Система уравнений Максвелла
- •ЛЕКЦИЯ 19
- •2.3. Колебания и волны
- •2.3.1. Виды и признаки колебаний
- •2.3.2. Параметры гармонических колебаний
- •2.3.3. Графики смещения скорости и ускорения
- •2.3.4. Основное уравнение динамики гармонических колебаний
- •ЛЕКЦИЯ 20
- •2.3.5. Энергия гармонических колебаний
- •2.3.6. Математический и пружинный маятник
- •2.3.7. Гармонический осциллятор
- •2.3.8. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •ЛЕКЦИЯ 21
- •2.3.9. Сложение взаимно перпендикулярных колебаний
- •2.3.10. Фигуры Лиссажу
- •2.3.11. Свободные затухающие механические колебания
- •2.3.12. Коэффициент затухания и логарифмический декремент затухания
- •ЛЕКЦИЯ 22
- •2.3.13. Вынужденные механические колебания
- •2.3.14. Свободные колебания в электрическом контуре без активного сопротивления
- •2.3.15. Свободные затухающие электрические колебания
- •ЛЕКЦИЯ 23
- •2.3.16. Вынужденные электрические колебания
- •2.3.17. Мощность, выделяемая в цепи переменного тока
- •2.3.18. Распространение волн в упругой среде
- •ЛЕКЦИЯ 24
- •2.3.19. Уравнения плоской и сферической волн
- •2.3.20. Фазовая скорость
- •2.3.21. Принцип суперпозиции. Групповая скорость
- •2.3.22. Стоячие волны
- •ЛЕКЦИЯ 25
- •2.3.23. Волновое уравнение
- •2.3.24. Дифференциальное уравнение электромагнитных волн
- •2.3.25. Энергия и импульс электромагнитного поля. Плотность потока энергии. Вектор Умова-Пойтинга

Затухающие колебания представляют собой непериодические колебания, так как в них не повторяется, например, максимальное значение амплитуды. Поэтому называть ω – циклической (повторяющейся, круговой) частотой можно лишь условно. По этой же причине и
называется условным периодом затухающих колебаний.
2.3.12. Коэффициент затухания и логарифмический декремент затухания
Найдем отношение значений амплитуды затухающих колебаний в моменты времени t и
(рис. 2.3.14):
,
где β – коэффициент затухания.
Рис. 2.3.14
Натуральный логарифм отношения амплитуд, следующих друг за другом через период Т, называется логарифмическим декрементом затухания χ:
;
.
Выясним физический смысл χ и β.
Время релаксации τ – время, в течение которого амплитуда А уменьшается в e раз.
167

отсюда
Следовательно, коэффициент затухания β есть физическая величина, обратная времени, в течение которого амплитуда уменьшается в е раз.
Пусть N число колебаний, после которых амплитуда уменьшается в e раз. Тогда
;
;
.
Следовательно, логарифмический декремент затухания χ есть физическая величина,
обратная числу колебаний, по истечении которых амплитуда А уменьшается в e раз.
Если χ = 0,01, то N = 100.
При большом коэффициенте затухания происходит не только быстрое уменьшение амплитуды, но и заметно увеличивается период колебаний. Когда сопротивление
становится равным критическому |
, а |
то круговая частота обращается в |
||
нуль ( |
), а ( |
), колебания |
прекращаются. Такой процесс называется |
|
апериодическим (рис. 2.3.15). |
|
|
|
Рис. 2.3.15
Отличия в следующем. При колебаниях тело, возвращающееся в положение равновесия, имеет запас кинетической энергии. В случае апериодического движения
энергия тела при возвращении в положение равновесия оказывается израсходованной на преодоление сил сопротивления, трения.
168