
- •ЛЕКЦИЯ 1
- •2. Электричество и магнетизм
- •2.1. Электростатика
- •2.1.1. Электрический заряд. Закон сохранения заряда
- •2.1.2. Взаимодействие электрических зарядов в вакууме. Закон Кулона
- •2.1.3. Электростатическое поле. Напряженность электростатического поля
- •2.1.4. Сложение электростатических полей. Принцип суперпозиции
- •2.1.5. Электростатическое поле диполя
- •2.1.6. Взаимодействие двух диполей
- •ЛЕКЦИЯ 2
- •2.1.7. Силовые линии электростатического поля
- •2.1.8. Поток вектора напряженности
- •2.1.9. Теорема Остроградского-Гаусса
- •ЛЕКЦИЯ 3
- •2.1.11. Теорема о циркуляции вектора поля
- •2.1.12. Работа сил электростатического поля. Потенциальная энергия
- •ЛЕКЦИЯ 4
- •2.1.13. Связь между напряженностью и потенциалом
- •2.1.14. Безвихревой характер электростатического поля
- •2.1.15. Силовые линии и эквипотенциальные поверхности
- •2.1.16. Расчет потенциалов простейших электростатических полей
- •ЛЕКЦИЯ 5
- •2.1.17. Поляризация диэлектриков
- •2.1.18. Различные виды диэлектриков
- •2.1.19. Вектор электрического смещения
- •ЛЕКЦИЯ 6
- •2.1.21. Изменение D и E на границе раздела двух диэлектриков
- •2.1.22. Напряженность и потенциал электростатического поля в проводнике
- •2.1.23. Определение напряженности поля вблизи поверхности заряженного проводника
- •2.1.24. Конденсаторы
- •ЛЕКЦИЯ 7
- •2.1.25. Энергия электростатического поля
- •2.1.26. Причины электрического тока
- •2.1.27. Плотность тока
- •2.1.28. Уравнение непрерывности
- •2.1.29. Сторонние силы и ЭДС
- •ЛЕКЦИЯ 8
- •2.1.30. Закон Ома для неоднородного участка цепи
- •2.1.31. Закон Ома в дифференциальной форме
- •2.1.32. Работа и мощность тока. Закон Джоуля – Ленца
- •2.1.33. КПД источника тока
- •ЛЕКЦИЯ 9
- •2.2. Электромагнетизм
- •2.2.1. Магнитные взаимодействия
- •2.2.2. 3акон Био–Савара–Лапласа
- •ЛЕКЦИЯ 10
- •2.2.3. Магнитное поле движущегося заряда
- •2.2.4. Напряженность магнитного поля
- •2.2.5. Магнитное поле прямого тока
- •2.2.6. Магнитное поле кругового тока
- •ЛЕКЦИЯ 11
- •2.2.7. Теорема Гаусса для вектора магнитной индукции
- •2.2.8. Закон Ампера
- •2.2.9. Взаимодействие двух параллельных проводников с током
- •ЛЕКЦИЯ 12
- •2.2.10. Воздействие магнитного поля на рамку с током
- •2.2.11. Сила Лоренца
- •2.2.12. Циркуляция вектора магнитной индукции
- •ЛЕКЦИЯ 13
- •2.2.13. Магнитное поле соленоида
- •2.2.14. Магнитное поле тороида
- •2.2.15. Работа по перемещению проводника с током в магнитном поле
- •ЛЕКЦИЯ 14
- •2.2.16. Опыты Фарадея. Индукционный ток. Правило Ленца
- •2.2.17. Величина ЭДС индукции
- •2.2.18. Природа ЭДС индукции
- •ЛЕКЦИЯ 15
- •2.2.19. Циркуляция вектора напряженности вихревого электрического поля
- •2.2.20. Явление самоиндукции
- •2.2.21. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность
- •ЛЕКЦИЯ 16
- •2.2.22. Взаимная индукция
- •2.2.23. Индуктивность трансформатора
- •2.2.24. Энергия магнитного поля
- •2.2.25. Магнитное поле в веществе
- •ЛЕКЦИЯ 17
- •2.2.26. Диамагнетики и парамагнетики в магнитном поле
- •2.2.27. Ферромагнетики
- •2.2.28. Закон полного тока
- •ЛЕКЦИЯ 18
- •2.2.29. Ток смещения
- •2.2.30. Единая теория электрических и магнитных явлений. Система уравнений Максвелла
- •ЛЕКЦИЯ 19
- •2.3. Колебания и волны
- •2.3.1. Виды и признаки колебаний
- •2.3.2. Параметры гармонических колебаний
- •2.3.3. Графики смещения скорости и ускорения
- •2.3.4. Основное уравнение динамики гармонических колебаний
- •ЛЕКЦИЯ 20
- •2.3.5. Энергия гармонических колебаний
- •2.3.6. Математический и пружинный маятник
- •2.3.7. Гармонический осциллятор
- •2.3.8. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •ЛЕКЦИЯ 21
- •2.3.9. Сложение взаимно перпендикулярных колебаний
- •2.3.10. Фигуры Лиссажу
- •2.3.11. Свободные затухающие механические колебания
- •2.3.12. Коэффициент затухания и логарифмический декремент затухания
- •ЛЕКЦИЯ 22
- •2.3.13. Вынужденные механические колебания
- •2.3.14. Свободные колебания в электрическом контуре без активного сопротивления
- •2.3.15. Свободные затухающие электрические колебания
- •ЛЕКЦИЯ 23
- •2.3.16. Вынужденные электрические колебания
- •2.3.17. Мощность, выделяемая в цепи переменного тока
- •2.3.18. Распространение волн в упругой среде
- •ЛЕКЦИЯ 24
- •2.3.19. Уравнения плоской и сферической волн
- •2.3.20. Фазовая скорость
- •2.3.21. Принцип суперпозиции. Групповая скорость
- •2.3.22. Стоячие волны
- •ЛЕКЦИЯ 25
- •2.3.23. Волновое уравнение
- •2.3.24. Дифференциальное уравнение электромагнитных волн
- •2.3.25. Энергия и импульс электромагнитного поля. Плотность потока энергии. Вектор Умова-Пойтинга

(2.2.75)
,
Плотность энергии магнитного поля в соленоиде с сердечником будет складываться из энергии поля в вакууме и в магнетике сердечника:
, отсюда |
. |
|
Т.к. в вакууме , имеем
2.2.25. Магнитное поле в веществе
При изучении магнитного поля в веществе различают два типа токов – макротоки и
микротоки.
Макротоками называются токи проводимости и конвекционные токи, связанные с движением заряженных макроскопических тел.
Микротоками (молекулярными токами) называют токи, обусловленные движением электронов в атомах, молекулах и ионах.
Магнитное поле в веществе является суперпозицией двух полей: внешнего магнитного поля, создаваемого макротоками и внутреннего, или собственного, магнитного поля, создаваемого микротоками.
Характеризует магнитное поле в веществе вектор B , равный геометрической сумме и
магнитных полей:
, |
(2.2.76) |
|
Количественной характеристикой намагниченного состояния вещества служит
векторная величина – намагниченность J , равная отношению магнитного момента малого объема вещества к величине этого объема:
|
(2.2.77) |
|
, |
где |
– магнитный момент i-го атома из числа n атомов, в объеме V. |
|
Для того чтобы связать вектор намагниченности среды J с током I микро , рассмотрим |
равномерно намагниченный параллельно оси цилиндрический стержень длиной h и
130

поперечным сечением S (рис. 2.2.41, а). Равномерная намагниченность означает, что плотность атомных циркулирующих токов внутри материала I микро повсюду постоянна.
а |
б |
в |
Рис. 2.2.41
Каждый атомный ток в плоскости сечения стержня, перпендикулярной его оси, представляет микроскопический кружок, причем все микротоки текут в одном направлении – против часовой стрелки (рис. 2.2.41), б). В местах соприкосновения отдельных атомов и молекул (А, В) молекулярные токи противоположно направлены и компенсируют друг друга (рис. 2.2.41, в). Нескомпенсированными остаются лишь токи, текущие вблизи поверхности материала, создавая на поверхности материала некоторый
микроток I микро , возбуждающий во внешнем пространстве магнитное поле, равное полю, созданному всеми молекулярными токами.
Закон полного тока для магнитного поля в вакууме можно обобщить на случай магнитного поля в веществе:
|
|
(2.2.78) |
где I микро и I макро – алгебраическая сумма |
макро- и микротоков |
сквозь поверхность, |
натянутую на замкнутый контур L. |
|
|
Как видно из рисунка 2.2.42, вклад в |
I микро дают только те |
молекулярные токи, |
которые нанизаны на замкнутый контур L. |
|
|
Рис. 6.4
131

Алгебраическая сумма сил микротоков связана с циркуляцией вектора намагниченности соотношением
(2.2.79)
,
тогда закон полного тока можно записать в виде
(2.2.80)
,
Вектор
называется напряженностью магнитного поля.
|
Таким образом, закон полного тока для магнитного поля в веществе утверждает, что |
|
циркуляция вектора напряженности магнитного поля |
H вдоль произвольного |
|
замкнутого контура L равна алгебраической сумме макротоков сквозь поверхность, |
||
натянутую на этот контур: |
|
|
|
, |
(2.2.81) |
|
|
|
|
Выражение (2.2.81)– это закон полного тока в интегральной форме. В |
|
дифференциальной форме его можно записать: |
|
|
|
, |
(2.2.82) |
|
|
|
|
Намагниченность изотропной среды с напряженностью H связаны соотношением: |
|
|
, |
(2.2.83) |
где |
– коэффициент пропорциональности, характеризующий магнитные свойства |
вещества и называемый магнитной восприимчивостью среды. Он связан с магнитной проницаемостью соотношением .
132