
- •Статистика
- •080502.65 «Экономика и управление на предприятии (по отраслям)»
- •Тема 1.Предмет, методы и задачи статистики 4
- •Задания для самостоятельной работы.
- •Тема 2. Статистическое наблюдение.
- •Задания для самостоятельной работы.
- •Тема 3. Группировка статистических материалов.
- •Решение типовых задач.
- •Задания для самостоятельной работы
- •Тема 4. Абсолютные и относительные статистические величины.
- •Решение типовых задач.
- •Задания для самостоятельной работы.
- •Тема 5. Средние величины.
- •Решение типовых задач.
- •Задания для самостоятельной работы.
- •Тема 6. Показатели вариации признака Понятие вариации.
- •Сложение дисперсий изучаемого признака.
- •Характеристика закономерности рядов распределения
- •Решение типовых задач.
- •Задачи для самостоятельной работы.
- •Тема 7. Ряды динамики. Понятие и виды динамических рядов.
- •Показатели ряда динамики.
- •Средние показатели динамики.
- •Статистические методы выявления трендов.
- •Прогнозирование на основе средних показателей динамики.
- •Аналитическое выравнивание и индексы сезонности.
- •Решение типовых задач.
- •Задачи для самостоятельной работы.
- •Тема 8. Статистические индексы Понятие, виды, свойства и основные задачи применения индексов в экономико-статистических исследованиях
- •Индивидуальные индексы и общие индексы в агрегатной форме
- •Общие индексы в преобразованной форме (в форме средних из индивидуальных индексов).
- •Индексы переменного и постоянного состава и структурных сдвигов.
- •Индексы цен
- •Решение типовых задач
- •Задания для самостоятельной работы
- •Тема 9. Выборочное наблюдение
- •Решение типовых задач.
- •Задания для самостоятельной работы.
- •Тема 10 . Статистическое изучение связи
- •Статистические изучения связи.
- •Решение типовых задач.
- •Задачи для самостоятельной работы.
- •Тема 11. Статистика рынка трудового потенциала, трудовых ресурсов, занятости и безработицы.
- •Решение типовых задач.
- •Задания для самостоятельной работы.
- •Тема 12 Статистика производственных процессов.
- •Решение типовых задач.
- •Задачи для самостоятельного решения.
- •И. М. Шевелев, с.А.Черный статистика
Тема 6. Показатели вариации признака Понятие вариации.
Для характеристики размера вариации признака используются абсолютные и относительные показатели. К абсолютным показателям вариации относятся: размах колебаний, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия.
Размах
колебаний (размах вариации)
где
,
- соответственно максимальное и
минимальное значения признака.
Среднее
линейное отклонение
и среднее квадратическое отклонение
показывают, на сколько в среднем
отличаются индивидуальные значения
признака от среднего его значения.
Среднее линейное отклонение определяется
по формулам:
а) для несгруппированных данных (первичного ряда)
б) для п вариационного ряда:
Среднее
квадратическое
отклонение ()
и дисперсия (
)определяются
так:
а) для несгруппированных данных:
б) для n вариационного ряда:
т.
е. дисперсия равна средней из квадратов
индивидуальных значений признака минус
квадрат средней величины. Следовательно:
Формулы расчета относительных показателей вариации следующие:
коэффициент
осцилляции -
относительное
линейное отклонение -
коэффициент
вариации -
.
Наиболее часто применяется коэффициент вариации. Его применяют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному).
Сложение дисперсий изучаемого признака.
Изучая дисперсию интересующего нас признака в пределах исследуемой совокупности и опираясь на общую среднюю в расчетах, нельзя оценить влияние отдельных факторов, определяющих колеблемость индивидуальных значений (вариант) признака. Это можно сделать при помощи метода группировок, когда единицы изучаемой совокупности подразделяются на однородные группы по признаку-фактору. При этом кроме общей средней для всей совокупности исчисляются средние по отдельным группам (групповые или частные средние) и три показателя дисперсии: общая дисперсия, межгрупповая дисперсия, средняя внутригрупповая дисперсия.
Величина обшей дисперсии характеризует вариацию признака под влиянием всех факторов, формирующих уровень признака у единиц данной совокупности, и определяется по формуле:
,
где
-
общая средняя арифметическая для всей
изучаемой совокупности.
Межгрупповая дисперсия (дисперсия групповых средних) отражает систематическую вариацию, т. е. те различия в величине изучаемого признака, которые возникают под влиянием фактора, положенного в основу группировки. Межгрупповая дисперсия определяется по формуле:
,
где
-
средняя по отдельной группе;
-
число единиц в определенной группе.
Средняя внутригрупповая дисперсия характеризует случайную вариацию, возникающую под влиянием других, неучтенных факторов, и не зависит от условия (признака-фактора), положенного в основу группировки.
Средняя внутригрупповая дисперсия определяется по формуле:
,
где
-
дисперсия по отдельной группе.
Указанные
дисперсии взаимосвязаны между собой
следующим равенством: величина общей
дисперсии равна сумме межгрупповой
дисперсии и средней внутригрупповой
дисперсии:
.
Это тождество отражает закон (правило) сложения дисперсий. Опираясь на это правило, можно определить, какая часть (доля) общей дисперсии складывается под влиянием признака-фактора, положенного в основу группировки.
Альтернативные признаки – это признаки, которыми обладают одни единицы совокупности и не обладают другие (например, работники либо имеют высшее образование, либо не имеют, т.е. это два взаимоисключающих варианта). При статистическом выражении колеблемости альтернативного признака, наличие признака обозначается 1, а доля единиц совокупности, обладающих данным признаком, обозначается р. Отсутствие признака обозначается 0, доля единиц, не обладающих данным признаком - q. Очевидно, p+q=1.
Отсюда,
Т.о., дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, и доли единиц, не обладающих им.
-
средняя из внутригрупповых дисперсий
-
межгрупповая дисперсия доли
-
средняя доля по группам
-
общая дисперсия доли.