
- •Введение
- •Этапы большого пути
- •Библиотеки для параллельного и распределенного программирования
- •Новый единый стандарт спецификаций unix
- •Для кого написана эта книга
- •Среды разработки
- •Дополнительный материал Диаграммы uml
- •Профили программы
- •Параграфы
- •Тестирование кода и его надежность
- •Ждем ваших отзывов!
- •Благодарности
- •Преимущества параллельного программирования
- •Что такое параллелизм
- •Два основных подхода к достижению параллельности
- •Преимущества параллельного программирования
- •Простейшая модель параллельного программирования (pram)
- •Простейшая классификация схем параллелизма
- •Преимущества распределенного программирования
- •Простейшие модели распределенного программирования
- •Мультиагентные распределенные системы
- •Минимальные требования
- •Декомпозиция
- •Синхронизация
- •Базовые уровни программного параллелизма
- •Параллелизм на уровне инструкций
- •Параллелизм на уровне подпрограмм
- •Параллелизм на уровне объектов
- •Параллелизм на уровне приложений
- •Стандарт mpi
- •Pvm: стандарт для кластерного программирования
- •Стандарт corba
- •Реализации библиотек на основе стандартов
- •Среды для параллельного и распределенного программирования
- •Проблемы параллельного и распределенного программирования
- •Кардинальное изменение парадигмы
- •Проблемы координации
- •Проблема №3: взаимоблокировка
- •Проблема №4: трудности организации связи
- •Отказы оборудования и поведение по
- •Негативные последствия излишнего параллелизма и распределения
- •Выбор архитектуры
- •Различные методы тестирования и отладки
- •Связь между параллельным и распределенным проектами
- •Определение процесса
- •Два вида процессов
- •Блок управления процессами
- •Анатомия процесса
- •Состояния процессов
- •Планирование процессов
- •Стратегия планирования
- •Использование утилиты ps
- •Установка и получение приоритета процесса
- •Переключение контекста
- •Создание процесса
- •Отношения между родительскими и сыновними процессами
- •Утилита pstree
- •Использование системной функции fork()
- •Использование семейства системных функций exec
- •Функции execl ()
- •Функции execv ()
- •Определение ограничений для функций exec ()
- •Чтение и установка переменных среды
- •Использование posix-функций для порождения процессов
- •Идентификация родительских и сыновних процессов с помощью функций управления процессами
- •Завершение процесса
- •Ресурсы процессов
- •§ 3.1 • Граф распределения ресурсов ,
- •Типы ресурсов
- •Posix-функции для установки ограничений доступа к ресурсам
- •Асинхронные и синхронные процессы
- •Функция wait ()
- •Разбиение программы на задачи
- •Линии видимого контура
- •Определение потока
- •Контекстные требования потока
- •Сравнение потоков и процессов
- •Различия между потоками и процессами
- •Потоки, управляющие другими потоками
- •Преимущества использования потоков
- •Переключение контекста при низкой (ограниченной) доступности процессора
- •Возможности повышения производительности приложения
- •Простая схема взаимодействия между параллельно выполняющимися потоками
- •Упрощение структуры программы
- •Недостатки использования потоков
- •Потоки могут легко разрушить адресное пространство процесса
- •Один поток может ликвидировать целую программу
- •Потоки не могут многократно использоваться другими программами
- •Анатомия потока
- •Атрибуты потока
- •Планирование потоков
- •Состояния потоков
- •Планирование потоков и область конкуренции
- •Стратегия планирования и приоритет
- •Изменение приоритета потоков
- •Ресурсы потоков
- •Модели создания и функционирования потоков
- •Модель делегирования
- •Модель с равноправными узлами
- •Модель конвейера
- •Модель «изготовитель-потребитель»
- •Модели spmd и мрмd для потоков
- •Введение в библиотеку Pthread
- •Анатомия простой многопоточной программы
- •Компиляция и компоновка многопоточных программ
- •Создание потоков
- •Получение идентификатора потока
- •Присоединение потоков
- •Создание открепленных потоков
- •Использование объекта атрибутов
- •Создание открепленных потоков с помощью объекта атрибутов
- •Управление потоками
- •Завершение потоков
- •Точки аннулирования потоков
- •Очистка перед завершением
- •Управление стеком потока
- •Установка атрибутов планирования и свойств потоков
- •Установка области конкуренции потока
- •Использование функции sysconf ()
- •Управление критическими разделами
- •Безопасность использования потоков и библиотек
- •Разбиение программы на несколько потоков
- •Использование модели делегирования
- •Использование модели сети с равноправными узлами
- •Использование модели конвейера
- •Использование модели «изготовитель-потребитель»
- •Создание многопоточных объектов
- •Синхронизация параллельно выполняемых задач
- •Координация порядка выполнения потоков
- •Взаимоотношения между синхронизируемыми задачами
- •Отношения типа старт-старт (cc)
- •Отношения типа финиш-старт (фс)
- •Отношения типа старт-финиш (сф)
- •Отношения типа финиш-финиш (фф)
- •Синхронизация доступа к данным
- •Модель ррам
- •Параллельный и исключающий доступ к памяти
- •Что такое семафоры
- •Операции по управлению семафором
- •Мьютексные семафоры
- •Использование мьютексного атрибутного объекта
- •Использование мьютексных семафоров для управления критическими разделами
- •Блокировки для чтения и записи
- •Использование блокировок чтения-записи для реализации стратегии доступа
- •Условные переменные
- •Использование условных переменных для управления отношениями синхронизации
- •Объектно-ориентированный подход к синхронизации
- •Классические модели параллелизма, поддерживаемые системой pvm
- •Выполнение pvm-программы в виде двоичного файла
- •Запуск pvm-программ c помощью pvm-консоли
- •Запуск pvm-программ c помощью xpvm
- •Требования к pvm-программам
- •Методы использования pvm-задач
- •§ 6.1. Обозначение сочетаний
- •6.3. Базовые меха н измы pvm 233
- •Базовые механизмы pvm
- •Функции управления процессами
- •6.3. Базовые меха н измы pvm 235
- •Упаковка и отправка сообщений
- •6.3. Базовые механизмы pvm 237
- •Доступ к стандартному входному потоку (stdin) и стандартному выходному потоку (stdout) со стороны pvm-задач
- •Получение доступа к стандартному выходному потоку (cout) из сыновней задачи
- •Обработка ошибок, исключительных ситуаций и надежность программного обеспечения
- •Надежность программного обеспечения
- •Отказы в программных и аппаратных компонентах
- •Определение дефектов в зависимости от спецификаций по
- •Обработка ошибок или обработка исключительных ситуаций?
- •Надежность по: простой план
- •План а: модель возобновления, план б: модель завершения
- •Использование объектов отображения для обработки ошибок
- •Классы исключений
- •Классы runtime__error
- •Классы logic_error
- •Выведение новых классов исключений
- •Защита классов исключений от исключительныхситуаций
- •Диаграммы событий, логические выражения и логические схемы
- •Распределенное объектно-ориентированное программирование
- •Декомпозиция задачи и инкапсуляция ее решения
- •Взаимодействие между распределенными объектами
- •Синхронизация взаимодействия локальных и удаленных объектов
- •Обработка ошибок и исключений в распределенной среде
- •Доступ к объектам из других адресных пространств
- •Брокеры объектных запросов (orb)
- •Язык описания интерфейсов (idl):более «пристальный» взгляд на corba-объекты
- •Анатомия базовой corba-программы потребителя
- •Анатомия базовой corba-программы изготовителя
- •Базовый npoeкт corba-приложения
- •Получение ior-ссылки для удаленных объектов
- •Служба имен
- •§ 8.1. Семантические сети
- •Использование службы имен и создание именных контекстов
- •Служба имен «потребитель-клиент»
- •Подробнее об объектных адаптерах
- •Хранилища реализаций и интерфейсов
- •Простые pacnpeделенные Web-службы, использующие corba-спецификацию
- •Маклерская служба
- •Парадигма «клиент-сервер»
- •Реализация моделей spmd и mpmd с помощью шаблонов и mpi-программирования
- •Декомпозиция работ для mpi-интерфейса
- •Дифференциация задач по рангу
- •Группирование задач по коммуникаторам
- •Анатомия mpi-задачи
- •Использование шаблонных функций для представления mpi-задач
- •Реализация шаблонов и модельБрмо (типы данных)
- •Использование полиморфизмадля реализации mpmd-модели
- •Введение mpmd-модели c помощью функций -объектов
- •Как упростить взаимодействие между mpi-задачами
- •Визуализация проектов параллельных и распределенных систем
- •Визуализация структур
- •Классы и объекты
- •Отображение информации об атрибутах и операциях класса
- •Организация атрибутов и операций
- •Шаблонные классы
- •Отношения между классами и объектами
- •Интерфейсные классы
- •Организация интерактивных объектов
- •Отображение параллельного поведения
- •Сотрудничество объектов
- •Процессы и потоки
- •Отображение нескольких потоков выполнения и взаимодействия между ними
- •Последовательность передачи сообщений между объектами
- •Деятельность объектов
- •Конечные автоматы
- •Параллельные подсостояния
- •Распределенные объекты
- •Визуализация всей системы
- •Визуализация развертывания систем
- •Архитектура системы
- •Проектирование компонентов для поддержки параллелизма
- •Как воспользоваться преимуществами интерфейсных классов
- •Подробнее об объектно-ориентированном взаимном исключении и интерфейсных классах
- •«Полуширокие» интерфейсы
- •Поддержка потокового представления
- •Перегрузка операторов "«" и "»" для pvm-потоков данных
- •Пользовательские классы, создаваемые для обработки pvm-потоков данных
- •Объектно-ориентированные каналы и fifo-очереди как базовые элементы низкого уровня
- •Связь каналов c iostream-объектами с помощью дескрипторов файлов
- •18 Cerr « «Ошибка при создании канала " « endl;
- •Доступ к анонимным каналам c использованием итератора ostream_iterator
- •Fifo-очереди (именованные каналы),
- •Интерфейсные fifo-классы
- •Каркасные классы
- •Реализация агентно-ориентированных архитектур
- •Что такое агенты
- •Агенты: исходное определение
- •Типы агентов
- •В чем состоит разница между объектами и агентами
- •Понятие об агентно-ориентированном программировании
- •§ 12:1 Дедукция, индукция и абдукция
- •Роль агентов в распределенном программировании
- •Агенты и параллельное программирование
- •Базовые компоненты агентов
- •Когнитивные структуры данных
- •Методы рассуждений
- •Типы данных предположений и структуры убеждений
- •Класс агента
- •Цикл активизации агента
- •Простая автономность
- •12.6. Резюме
- •Реализация технологии «классной доски» с использованием pvm-средств, потоков и компонентов
- •Модель «классной доски»
- •Методы структурирования «классной доски»
- •Анатомия источника знаний
- •Стратегии управления для «классной доски»
- •Реализация модели «классной доски» с помощью corba-объектов
- •Пример использования corba-объекта «классной доски»
- •Реализация интерфейсного класса black_board
- •Порождение источников знаний в конструкторе «классной доски»
- •Порождение источников знаний с помощью pvm-задач
- •Связь «классной доски» и источников знаний
- •Активизация источников знаний с помощью posix-функции spawn()
- •Реализация модели «классной доски» с помощью глобальных объектов
- •Активизация источников знаний с помощью потоков
- •Приложение a
- •Диаграммы классов и объектов
- •Диаграммы сотрудничества
- •Диаграммы последовательностей
- •A.2.3. Диаграммы видов деятельности
- •A.3. Диаграммы состояний
- •A.4. Диаграммы пакетов
- •Приложение б 26
Использование блокировок чтения-записи для реализации стратегии доступа
Блокировки чтения-записи можно использовать для реализации стратегии доступа CREW (параллельное чтение и исключающая запись). Согласно этой стратегии возможность параллельно считывать данные может быть предоставлена сразу нескольким задачам, но только одна задача получит право доступа для записи. При выполнении монопольной записи в этом случае не будет дано разрешение на параллельное чтение данных. Использование блокировок чтения-записи для защиты критических разделов продемонстрировано в листинге 5.3.
// Листинг 5.3. Пример использования потоками блокировок
// чтения-записи
//...
pthread_t ThreadA, ThreadB, ThreadC, ThreadD ; pthread_rwlock_t RWLock;
void *producerl(void *X) {
pthread_rwlock_wrlock(&RWLock) ; // Критический раэдел.
pthread_rwlock_unlock(&RWLock) ; return(0);
}
void *producer2 (void *X) {
pthread_rwlock_wrlock(&RWLock) ; // Критический раздел.
pthread_rwlock_unlock(&RWLock) ;
}
void *consumerl(void *X) {
pthread_rwlock_rdlock(&RWLock); // Критический раздел.
pthread_rwlock_unlock(&RWLock); return(0);
}
void *consumer2(void *X) {
pthread_rwlock_rdlock(&RWLock); // Критический раздел.
pthread_rwlock__unlock(&RWLock); return(0);
}
int main(void) {
pthread_rwlock_init(&RWLock,NULL); // Устанавливаем атрибуты мьютекса. pthread_create(&ThreadA, NULL, producerl, NULL) pthread_create(&ThreadB, NULL, consumerl, NULL) pthread_create(&ThreadC,NULL,producer2,NULL) pthread_create(&ThreadD,NULL, consumer2,NULL) //.. .
return(0);
}
В листинге 5.3 создаются четыре потока. Два потока, ThreadA и ThreadC, выполняют роль изготовителей, а остальные два (ThreadB и ThreadD) — потребителей. Все потоки имеют критический раздел, который защищается объектом блокировки чтения-записи RWLock. Потоки ThreadB и ThreadD могут входить в свои критические разделы параллельно или последовательно, но это исключено, если поток ThreadA или ThreadC пребывает в своем критическом разделе. Потоки ThreadA и ThreadC не могут входить в свои критические разделы параллельно. Частичная таблица решении для листинга 5.3 показана в табл. 5.6.
Таблица 5.6. Час т ич н ая таблица решений для листинга 5.3
Условные переменные
Условная переменная представляет собой семафор, используемый для сигнализации о событии, которое произошло. Сигнала о том, что произошло некоторое событие, может ожидать один или несколько процессов (или потоков) от других процессов или потоков. Следует понимать различие между условными переменными и рассмотренными выше мьютексными семафорами. Назначение мьютексного семафора и блокировок чтения-записи — синхронизировать доступ к данным, в то время как условные переменные обычно используются для синхронизации последовательности операций. По этому поводу в своей книге UNIX Network Programming прекрасно высказался Ричард Стивенс (W. Richard Stevens): « Мьютексы нужно использовать для блокирования, а не для ожидания ».
В листинге 4.6 поток-«потребитель» содержал цикл:
15 while(TextFiles.empty())
16 {}
Поток-«потребитель» выполнял итерации цикла до тех пор, пока в очереди TextFiles были элементы. Этот цикл можно заменить условной пере м енной. Поток-«изготовитель» сигналом уведомляет потребителя о том, что в очередь помещены элементы. Поток-«потребитель» может ожидать до тех пор, пока не получит сигнал, а затем перейдет к обработке очереди.
Условная переменная имеет тип pthread_cond_t. Ниже перечислены типы операций, которые может она выполнять:
• инициализация;
• разрушение;
• ожидание;
• ожидание с ограничением по времени;
• адресная сигнализация;
• всеобщая сигнализация;
Операции инициализации и разрушения выполняются условными переменными подобно аналогичным операциям других мьютексов. Функции класса pthread_cond_t, которые реализуют эти операции, перечислены в табл. 5.7.
Таблица 5.7. Функции класса pthread_cond_t, которые реализуют операции условных переменных
Условные переменные используются совместно с мьютексами. При попытке заблокировать мьютекс поток или процесс будет заблокирован до тех пор, пока мьютекс не освободится. После разблокирования поток или процесс получит мьютекс и продолжит свою работу. При использовании условной переменной ее необходимо связать с мьютексом.
//. . .
pthread_mutex_lock(&Mutex) ;
pthread_cond_wait(&EventMutex, &Mutex);
//. . .
pthread_mutex_unlock(&Mutex) ;
Итак, некоторая задача делает попытку заблокировать мьютекс. Если мьютекс уже заблокирован, то эта задача блокируется. После разблокирования задача освободит мьютекс Mutex и при этом будет ожидать сигнала для условной переменной EventMutex . Если мьютекс не заблокирован, задача будет ожидать сигнала неограниченно долго. При ожидании с ограничением по времени задача будет ожидать сигнала в течение заданного интервала времени. Если это время истечет до получения задачей сигнала, функция возвратит код ошибки. Затем задача вновь затребует мьютекс.
Выполняя адресную сигнализацию, задача уведомляет другой поток или процесс о том, что произошло некоторое событие. Если задача ожидает сигнала для заданной условной переменной, эта задача будет разблокирована и получит мьютекс. Если сразу несколько задач ожидают сигнала для заданной условной переменной, то разблокирована будет только одна из них. Остальные задачи будут ожидать в очереди, и их разблокирование будет происходить в соответствии с используемой стратегией планирования. При выполнении операции всеобщей сигнализации уведомление получат все задачи, ожидающие сигнала для заданной условной переменной. При разблокировании нескольких задач они будут состязаться за право владения мьютексом в соответствии с используемой стратегией планирования. В отличие от операции ожидания, задача, выполняющая операцию сигнализации, не предъявляет прав на владение мьютексом, хотя это и следовало бы сделать.
Условная переменная также имеет атрибутный объект, функции которого перечислены в табл. 5.8.
Таблица 5.8. Функции доступа к атрибутному объекту для условной переменной типа pthread_cond_t
• int pthread_condattr_init ( pthread_condattr_t * attr) Инициализирует атрибутный объект условной переменной, заданный параметром attr, значениями, действующими по умолчанию для всех атрибутов, определенных реализацией;
• int pthread_condattr_destroy ( pthread_condattr_t * attr) ; Разрушает атрибутный объект условной переменной, заданный параметром attr. Этот объект можно инициализировать повторно, вы-звав функцию pthread_condattr_init ()
• int pthread_condattr_setpshared ( pthread_condattr_t * attr,int pshared);
• int pthread_condattr_getpshared ( const pthread_condattr_t * restrict attr, int *restrict pshared); Устанавливает или возвращает атрибут process-shared атрибутного объекта условной переменной, заданного параметром attr. Параметр pshared может содержать следующие значения:
• PTHREAD_PROCESS_SHARED (разрешает блокировку чтения-записи, разделяемую любыми потоками, которые имеют доступ к памяти, выделенной для этой условной переменной, даже если потоки принадлежат различным процессам);
• PTHREAD_PROCESS_PRIVATE (Условная Переменная разделяется между потоками одного процесса)
• int pthread_condattr_setclock ( pthread_condattr_t * attr, clockid_t clock_id);
• int pthread_condattr_getclock ( const pthread_condattr_t * restrict attr, clockid_t * restrict clock_id); Устанавливает или возвращает атрибут clock атрибутного объекта условной переменной, заданного параметром attr . Атрибут clock представляет собой идентификатор часов, используемых для измерения лимита времени в функции pthread_cond_timedwait (). По умолчанию для атрибута clock используется идентификатор системных часов