
- •Введение
- •Этапы большого пути
- •Библиотеки для параллельного и распределенного программирования
- •Новый единый стандарт спецификаций unix
- •Для кого написана эта книга
- •Среды разработки
- •Дополнительный материал Диаграммы uml
- •Профили программы
- •Параграфы
- •Тестирование кода и его надежность
- •Ждем ваших отзывов!
- •Благодарности
- •Преимущества параллельного программирования
- •Что такое параллелизм
- •Два основных подхода к достижению параллельности
- •Преимущества параллельного программирования
- •Простейшая модель параллельного программирования (pram)
- •Простейшая классификация схем параллелизма
- •Преимущества распределенного программирования
- •Простейшие модели распределенного программирования
- •Мультиагентные распределенные системы
- •Минимальные требования
- •Декомпозиция
- •Синхронизация
- •Базовые уровни программного параллелизма
- •Параллелизм на уровне инструкций
- •Параллелизм на уровне подпрограмм
- •Параллелизм на уровне объектов
- •Параллелизм на уровне приложений
- •Стандарт mpi
- •Pvm: стандарт для кластерного программирования
- •Стандарт corba
- •Реализации библиотек на основе стандартов
- •Среды для параллельного и распределенного программирования
- •Проблемы параллельного и распределенного программирования
- •Кардинальное изменение парадигмы
- •Проблемы координации
- •Проблема №3: взаимоблокировка
- •Проблема №4: трудности организации связи
- •Отказы оборудования и поведение по
- •Негативные последствия излишнего параллелизма и распределения
- •Выбор архитектуры
- •Различные методы тестирования и отладки
- •Связь между параллельным и распределенным проектами
- •Определение процесса
- •Два вида процессов
- •Блок управления процессами
- •Анатомия процесса
- •Состояния процессов
- •Планирование процессов
- •Стратегия планирования
- •Использование утилиты ps
- •Установка и получение приоритета процесса
- •Переключение контекста
- •Создание процесса
- •Отношения между родительскими и сыновними процессами
- •Утилита pstree
- •Использование системной функции fork()
- •Использование семейства системных функций exec
- •Функции execl ()
- •Функции execv ()
- •Определение ограничений для функций exec ()
- •Чтение и установка переменных среды
- •Использование posix-функций для порождения процессов
- •Идентификация родительских и сыновних процессов с помощью функций управления процессами
- •Завершение процесса
- •Ресурсы процессов
- •§ 3.1 • Граф распределения ресурсов ,
- •Типы ресурсов
- •Posix-функции для установки ограничений доступа к ресурсам
- •Асинхронные и синхронные процессы
- •Функция wait ()
- •Разбиение программы на задачи
- •Линии видимого контура
- •Определение потока
- •Контекстные требования потока
- •Сравнение потоков и процессов
- •Различия между потоками и процессами
- •Потоки, управляющие другими потоками
- •Преимущества использования потоков
- •Переключение контекста при низкой (ограниченной) доступности процессора
- •Возможности повышения производительности приложения
- •Простая схема взаимодействия между параллельно выполняющимися потоками
- •Упрощение структуры программы
- •Недостатки использования потоков
- •Потоки могут легко разрушить адресное пространство процесса
- •Один поток может ликвидировать целую программу
- •Потоки не могут многократно использоваться другими программами
- •Анатомия потока
- •Атрибуты потока
- •Планирование потоков
- •Состояния потоков
- •Планирование потоков и область конкуренции
- •Стратегия планирования и приоритет
- •Изменение приоритета потоков
- •Ресурсы потоков
- •Модели создания и функционирования потоков
- •Модель делегирования
- •Модель с равноправными узлами
- •Модель конвейера
- •Модель «изготовитель-потребитель»
- •Модели spmd и мрмd для потоков
- •Введение в библиотеку Pthread
- •Анатомия простой многопоточной программы
- •Компиляция и компоновка многопоточных программ
- •Создание потоков
- •Получение идентификатора потока
- •Присоединение потоков
- •Создание открепленных потоков
- •Использование объекта атрибутов
- •Создание открепленных потоков с помощью объекта атрибутов
- •Управление потоками
- •Завершение потоков
- •Точки аннулирования потоков
- •Очистка перед завершением
- •Управление стеком потока
- •Установка атрибутов планирования и свойств потоков
- •Установка области конкуренции потока
- •Использование функции sysconf ()
- •Управление критическими разделами
- •Безопасность использования потоков и библиотек
- •Разбиение программы на несколько потоков
- •Использование модели делегирования
- •Использование модели сети с равноправными узлами
- •Использование модели конвейера
- •Использование модели «изготовитель-потребитель»
- •Создание многопоточных объектов
- •Синхронизация параллельно выполняемых задач
- •Координация порядка выполнения потоков
- •Взаимоотношения между синхронизируемыми задачами
- •Отношения типа старт-старт (cc)
- •Отношения типа финиш-старт (фс)
- •Отношения типа старт-финиш (сф)
- •Отношения типа финиш-финиш (фф)
- •Синхронизация доступа к данным
- •Модель ррам
- •Параллельный и исключающий доступ к памяти
- •Что такое семафоры
- •Операции по управлению семафором
- •Мьютексные семафоры
- •Использование мьютексного атрибутного объекта
- •Использование мьютексных семафоров для управления критическими разделами
- •Блокировки для чтения и записи
- •Использование блокировок чтения-записи для реализации стратегии доступа
- •Условные переменные
- •Использование условных переменных для управления отношениями синхронизации
- •Объектно-ориентированный подход к синхронизации
- •Классические модели параллелизма, поддерживаемые системой pvm
- •Выполнение pvm-программы в виде двоичного файла
- •Запуск pvm-программ c помощью pvm-консоли
- •Запуск pvm-программ c помощью xpvm
- •Требования к pvm-программам
- •Методы использования pvm-задач
- •§ 6.1. Обозначение сочетаний
- •6.3. Базовые меха н измы pvm 233
- •Базовые механизмы pvm
- •Функции управления процессами
- •6.3. Базовые меха н измы pvm 235
- •Упаковка и отправка сообщений
- •6.3. Базовые механизмы pvm 237
- •Доступ к стандартному входному потоку (stdin) и стандартному выходному потоку (stdout) со стороны pvm-задач
- •Получение доступа к стандартному выходному потоку (cout) из сыновней задачи
- •Обработка ошибок, исключительных ситуаций и надежность программного обеспечения
- •Надежность программного обеспечения
- •Отказы в программных и аппаратных компонентах
- •Определение дефектов в зависимости от спецификаций по
- •Обработка ошибок или обработка исключительных ситуаций?
- •Надежность по: простой план
- •План а: модель возобновления, план б: модель завершения
- •Использование объектов отображения для обработки ошибок
- •Классы исключений
- •Классы runtime__error
- •Классы logic_error
- •Выведение новых классов исключений
- •Защита классов исключений от исключительныхситуаций
- •Диаграммы событий, логические выражения и логические схемы
- •Распределенное объектно-ориентированное программирование
- •Декомпозиция задачи и инкапсуляция ее решения
- •Взаимодействие между распределенными объектами
- •Синхронизация взаимодействия локальных и удаленных объектов
- •Обработка ошибок и исключений в распределенной среде
- •Доступ к объектам из других адресных пространств
- •Брокеры объектных запросов (orb)
- •Язык описания интерфейсов (idl):более «пристальный» взгляд на corba-объекты
- •Анатомия базовой corba-программы потребителя
- •Анатомия базовой corba-программы изготовителя
- •Базовый npoeкт corba-приложения
- •Получение ior-ссылки для удаленных объектов
- •Служба имен
- •§ 8.1. Семантические сети
- •Использование службы имен и создание именных контекстов
- •Служба имен «потребитель-клиент»
- •Подробнее об объектных адаптерах
- •Хранилища реализаций и интерфейсов
- •Простые pacnpeделенные Web-службы, использующие corba-спецификацию
- •Маклерская служба
- •Парадигма «клиент-сервер»
- •Реализация моделей spmd и mpmd с помощью шаблонов и mpi-программирования
- •Декомпозиция работ для mpi-интерфейса
- •Дифференциация задач по рангу
- •Группирование задач по коммуникаторам
- •Анатомия mpi-задачи
- •Использование шаблонных функций для представления mpi-задач
- •Реализация шаблонов и модельБрмо (типы данных)
- •Использование полиморфизмадля реализации mpmd-модели
- •Введение mpmd-модели c помощью функций -объектов
- •Как упростить взаимодействие между mpi-задачами
- •Визуализация проектов параллельных и распределенных систем
- •Визуализация структур
- •Классы и объекты
- •Отображение информации об атрибутах и операциях класса
- •Организация атрибутов и операций
- •Шаблонные классы
- •Отношения между классами и объектами
- •Интерфейсные классы
- •Организация интерактивных объектов
- •Отображение параллельного поведения
- •Сотрудничество объектов
- •Процессы и потоки
- •Отображение нескольких потоков выполнения и взаимодействия между ними
- •Последовательность передачи сообщений между объектами
- •Деятельность объектов
- •Конечные автоматы
- •Параллельные подсостояния
- •Распределенные объекты
- •Визуализация всей системы
- •Визуализация развертывания систем
- •Архитектура системы
- •Проектирование компонентов для поддержки параллелизма
- •Как воспользоваться преимуществами интерфейсных классов
- •Подробнее об объектно-ориентированном взаимном исключении и интерфейсных классах
- •«Полуширокие» интерфейсы
- •Поддержка потокового представления
- •Перегрузка операторов "«" и "»" для pvm-потоков данных
- •Пользовательские классы, создаваемые для обработки pvm-потоков данных
- •Объектно-ориентированные каналы и fifo-очереди как базовые элементы низкого уровня
- •Связь каналов c iostream-объектами с помощью дескрипторов файлов
- •18 Cerr « «Ошибка при создании канала " « endl;
- •Доступ к анонимным каналам c использованием итератора ostream_iterator
- •Fifo-очереди (именованные каналы),
- •Интерфейсные fifo-классы
- •Каркасные классы
- •Реализация агентно-ориентированных архитектур
- •Что такое агенты
- •Агенты: исходное определение
- •Типы агентов
- •В чем состоит разница между объектами и агентами
- •Понятие об агентно-ориентированном программировании
- •§ 12:1 Дедукция, индукция и абдукция
- •Роль агентов в распределенном программировании
- •Агенты и параллельное программирование
- •Базовые компоненты агентов
- •Когнитивные структуры данных
- •Методы рассуждений
- •Типы данных предположений и структуры убеждений
- •Класс агента
- •Цикл активизации агента
- •Простая автономность
- •12.6. Резюме
- •Реализация технологии «классной доски» с использованием pvm-средств, потоков и компонентов
- •Модель «классной доски»
- •Методы структурирования «классной доски»
- •Анатомия источника знаний
- •Стратегии управления для «классной доски»
- •Реализация модели «классной доски» с помощью corba-объектов
- •Пример использования corba-объекта «классной доски»
- •Реализация интерфейсного класса black_board
- •Порождение источников знаний в конструкторе «классной доски»
- •Порождение источников знаний с помощью pvm-задач
- •Связь «классной доски» и источников знаний
- •Активизация источников знаний с помощью posix-функции spawn()
- •Реализация модели «классной доски» с помощью глобальных объектов
- •Активизация источников знаний с помощью потоков
- •Приложение a
- •Диаграммы классов и объектов
- •Диаграммы сотрудничества
- •Диаграммы последовательностей
- •A.2.3. Диаграммы видов деятельности
- •A.3. Диаграммы состояний
- •A.4. Диаграммы пакетов
- •Приложение б 26
Агенты и параллельное программирование
При размещении агентов в среде с несколькими процессорами или параллельно выполняющимися потоками вы получаете такие же преимущества, как и при распределенном программировании, но с той лишь разницей, что сотрудничество между агентами программировать в этом случае гораздо проще. Для передачи сообщений между агентами, которые коллективно решают задачи некоторого вида, также можно использовать PVM- и MPI-среды. И снова-таки, рациональность агентов облегчает понимание, как следует провести декомпозицию работ для параллелизма. В параллельном программировании, как правило, встречаются такие проблемы.
1. Эффективное и рациональное разделение работы между несколькими компонентами.
2. Координация параллельно выполняющихся программных компонентов.
3. Разработка соответствующего взаимодействия (когда это необходимо) между компонентами.
4. Обработка исключительных ситуаций, ошибок и частичных отказов (если агенты функционируют на отдельных компьютерах).
Мультиагентные параллельные архитектуры часто характеризуются как слабосвязанные, т.е. им присущ минимум взаимодействия и взаимозависимости. Каждый агент знает свою цель и обладает методами для ее достижения. В то время как п. 3 не подвластен классу агента, п. 1, 2 и 4 можно легко управлять с помощью классов агентов. Например, при использовании агентов влияние п. 2 уменьшается, поскольку каждый агент рационален, имеет цель, а также способы и средства ее достижения. Поэтому вся ответственность смещается с алгоритма координации и управления на действия каждого агента. Влияние п. 4 также уменьшается, поскольку агенты самодостаточны, рациональны и автономны, а кроме того, хорошо продуманный класс агента должен включать необходимые меры по обеспечению отказоустойчивости агентов. Поскольку состояние агента инкапсулировано, ответственность за защиту критических разделов в объекте агента целиком воалагается на класс агента. Агент должен приводить в исполнение собственные стратегии доступа к данным. Возможные стратегии доступа, из которых могут выбирать агенты, перечислены в табл. 12.2.
Таблица 12.2. Стратегии доступа
EREW Монопольное чтение, монопольная запись
(Exclusive Read Exclusive Write)
CREW Параллельное чтение, монопольная запись
(Concurrent Read Exclusive Write)
ERCW Монопольное чтение, параллельная запись
(Exclusive Read Concurrent Write)
CRCW Параллельное чтение, параллельная запись
(Concurrent Read Concurrent Write)
Класс каждого агента должен определить, какал именно стратегия доступа приемлема в мультиагентной среде. В ряде случаев реализуются не просто отдельные стратегии доступа, перечисленные в табл. 12.2, а их комбинации. Это позволяетупростить параллельное программирование, поскольку разработчик может работать на более высоком уровне и не беспокоиться о построении мьютексов, семафоров и пр. Мультиагентные решения позволяют разработчику не погружаться в детали координации вызова каждой функции и организации доступа к данным. Каждый агент имеет цель. Каждый агент рационален, а следовательно, обладает определенной логикой для достижения своей цели. Процесс программирования в этом случае больше напоминает делегирование задач, а не координацию задач, которая характерна для традиционного параллельного программирования. Поскольку агентно-ориентированное программирование — это объектно-ориентированное программирование специального вида, применительно к агентам используется более декларативный вид параллельного программирования по сравнению с традиционным процедурно-ориентированным программированием, которое часто реализуется такими языками, как Fortran или С. Разработчик лишь определяет, что нужно сделать и какие агенты должны это сделать, т.е. выходит, что параллелизм практически сам заботится о себе. При этом всегда существует некоторый объем программирования, связанного с координацией и организацией взаимодействия, но агентно-ориентированное программирование сводит этот необходимый объем к минимуму. Однако обо всех этих «плюсах» можно говорить лишь при условии существования классов агентов. Очевидно, кто-то должен спроектировать классы агентов и написать их код. Теперь самое время разобраться в том, что должен содержать класс агента.