
- •Введение
- •Этапы большого пути
- •Библиотеки для параллельного и распределенного программирования
- •Новый единый стандарт спецификаций unix
- •Для кого написана эта книга
- •Среды разработки
- •Дополнительный материал Диаграммы uml
- •Профили программы
- •Параграфы
- •Тестирование кода и его надежность
- •Ждем ваших отзывов!
- •Благодарности
- •Преимущества параллельного программирования
- •Что такое параллелизм
- •Два основных подхода к достижению параллельности
- •Преимущества параллельного программирования
- •Простейшая модель параллельного программирования (pram)
- •Простейшая классификация схем параллелизма
- •Преимущества распределенного программирования
- •Простейшие модели распределенного программирования
- •Мультиагентные распределенные системы
- •Минимальные требования
- •Декомпозиция
- •Синхронизация
- •Базовые уровни программного параллелизма
- •Параллелизм на уровне инструкций
- •Параллелизм на уровне подпрограмм
- •Параллелизм на уровне объектов
- •Параллелизм на уровне приложений
- •Стандарт mpi
- •Pvm: стандарт для кластерного программирования
- •Стандарт corba
- •Реализации библиотек на основе стандартов
- •Среды для параллельного и распределенного программирования
- •Проблемы параллельного и распределенного программирования
- •Кардинальное изменение парадигмы
- •Проблемы координации
- •Проблема №3: взаимоблокировка
- •Проблема №4: трудности организации связи
- •Отказы оборудования и поведение по
- •Негативные последствия излишнего параллелизма и распределения
- •Выбор архитектуры
- •Различные методы тестирования и отладки
- •Связь между параллельным и распределенным проектами
- •Определение процесса
- •Два вида процессов
- •Блок управления процессами
- •Анатомия процесса
- •Состояния процессов
- •Планирование процессов
- •Стратегия планирования
- •Использование утилиты ps
- •Установка и получение приоритета процесса
- •Переключение контекста
- •Создание процесса
- •Отношения между родительскими и сыновними процессами
- •Утилита pstree
- •Использование системной функции fork()
- •Использование семейства системных функций exec
- •Функции execl ()
- •Функции execv ()
- •Определение ограничений для функций exec ()
- •Чтение и установка переменных среды
- •Использование posix-функций для порождения процессов
- •Идентификация родительских и сыновних процессов с помощью функций управления процессами
- •Завершение процесса
- •Ресурсы процессов
- •§ 3.1 • Граф распределения ресурсов ,
- •Типы ресурсов
- •Posix-функции для установки ограничений доступа к ресурсам
- •Асинхронные и синхронные процессы
- •Функция wait ()
- •Разбиение программы на задачи
- •Линии видимого контура
- •Определение потока
- •Контекстные требования потока
- •Сравнение потоков и процессов
- •Различия между потоками и процессами
- •Потоки, управляющие другими потоками
- •Преимущества использования потоков
- •Переключение контекста при низкой (ограниченной) доступности процессора
- •Возможности повышения производительности приложения
- •Простая схема взаимодействия между параллельно выполняющимися потоками
- •Упрощение структуры программы
- •Недостатки использования потоков
- •Потоки могут легко разрушить адресное пространство процесса
- •Один поток может ликвидировать целую программу
- •Потоки не могут многократно использоваться другими программами
- •Анатомия потока
- •Атрибуты потока
- •Планирование потоков
- •Состояния потоков
- •Планирование потоков и область конкуренции
- •Стратегия планирования и приоритет
- •Изменение приоритета потоков
- •Ресурсы потоков
- •Модели создания и функционирования потоков
- •Модель делегирования
- •Модель с равноправными узлами
- •Модель конвейера
- •Модель «изготовитель-потребитель»
- •Модели spmd и мрмd для потоков
- •Введение в библиотеку Pthread
- •Анатомия простой многопоточной программы
- •Компиляция и компоновка многопоточных программ
- •Создание потоков
- •Получение идентификатора потока
- •Присоединение потоков
- •Создание открепленных потоков
- •Использование объекта атрибутов
- •Создание открепленных потоков с помощью объекта атрибутов
- •Управление потоками
- •Завершение потоков
- •Точки аннулирования потоков
- •Очистка перед завершением
- •Управление стеком потока
- •Установка атрибутов планирования и свойств потоков
- •Установка области конкуренции потока
- •Использование функции sysconf ()
- •Управление критическими разделами
- •Безопасность использования потоков и библиотек
- •Разбиение программы на несколько потоков
- •Использование модели делегирования
- •Использование модели сети с равноправными узлами
- •Использование модели конвейера
- •Использование модели «изготовитель-потребитель»
- •Создание многопоточных объектов
- •Синхронизация параллельно выполняемых задач
- •Координация порядка выполнения потоков
- •Взаимоотношения между синхронизируемыми задачами
- •Отношения типа старт-старт (cc)
- •Отношения типа финиш-старт (фс)
- •Отношения типа старт-финиш (сф)
- •Отношения типа финиш-финиш (фф)
- •Синхронизация доступа к данным
- •Модель ррам
- •Параллельный и исключающий доступ к памяти
- •Что такое семафоры
- •Операции по управлению семафором
- •Мьютексные семафоры
- •Использование мьютексного атрибутного объекта
- •Использование мьютексных семафоров для управления критическими разделами
- •Блокировки для чтения и записи
- •Использование блокировок чтения-записи для реализации стратегии доступа
- •Условные переменные
- •Использование условных переменных для управления отношениями синхронизации
- •Объектно-ориентированный подход к синхронизации
- •Классические модели параллелизма, поддерживаемые системой pvm
- •Выполнение pvm-программы в виде двоичного файла
- •Запуск pvm-программ c помощью pvm-консоли
- •Запуск pvm-программ c помощью xpvm
- •Требования к pvm-программам
- •Методы использования pvm-задач
- •§ 6.1. Обозначение сочетаний
- •6.3. Базовые меха н измы pvm 233
- •Базовые механизмы pvm
- •Функции управления процессами
- •6.3. Базовые меха н измы pvm 235
- •Упаковка и отправка сообщений
- •6.3. Базовые механизмы pvm 237
- •Доступ к стандартному входному потоку (stdin) и стандартному выходному потоку (stdout) со стороны pvm-задач
- •Получение доступа к стандартному выходному потоку (cout) из сыновней задачи
- •Обработка ошибок, исключительных ситуаций и надежность программного обеспечения
- •Надежность программного обеспечения
- •Отказы в программных и аппаратных компонентах
- •Определение дефектов в зависимости от спецификаций по
- •Обработка ошибок или обработка исключительных ситуаций?
- •Надежность по: простой план
- •План а: модель возобновления, план б: модель завершения
- •Использование объектов отображения для обработки ошибок
- •Классы исключений
- •Классы runtime__error
- •Классы logic_error
- •Выведение новых классов исключений
- •Защита классов исключений от исключительныхситуаций
- •Диаграммы событий, логические выражения и логические схемы
- •Распределенное объектно-ориентированное программирование
- •Декомпозиция задачи и инкапсуляция ее решения
- •Взаимодействие между распределенными объектами
- •Синхронизация взаимодействия локальных и удаленных объектов
- •Обработка ошибок и исключений в распределенной среде
- •Доступ к объектам из других адресных пространств
- •Брокеры объектных запросов (orb)
- •Язык описания интерфейсов (idl):более «пристальный» взгляд на corba-объекты
- •Анатомия базовой corba-программы потребителя
- •Анатомия базовой corba-программы изготовителя
- •Базовый npoeкт corba-приложения
- •Получение ior-ссылки для удаленных объектов
- •Служба имен
- •§ 8.1. Семантические сети
- •Использование службы имен и создание именных контекстов
- •Служба имен «потребитель-клиент»
- •Подробнее об объектных адаптерах
- •Хранилища реализаций и интерфейсов
- •Простые pacnpeделенные Web-службы, использующие corba-спецификацию
- •Маклерская служба
- •Парадигма «клиент-сервер»
- •Реализация моделей spmd и mpmd с помощью шаблонов и mpi-программирования
- •Декомпозиция работ для mpi-интерфейса
- •Дифференциация задач по рангу
- •Группирование задач по коммуникаторам
- •Анатомия mpi-задачи
- •Использование шаблонных функций для представления mpi-задач
- •Реализация шаблонов и модельБрмо (типы данных)
- •Использование полиморфизмадля реализации mpmd-модели
- •Введение mpmd-модели c помощью функций -объектов
- •Как упростить взаимодействие между mpi-задачами
- •Визуализация проектов параллельных и распределенных систем
- •Визуализация структур
- •Классы и объекты
- •Отображение информации об атрибутах и операциях класса
- •Организация атрибутов и операций
- •Шаблонные классы
- •Отношения между классами и объектами
- •Интерфейсные классы
- •Организация интерактивных объектов
- •Отображение параллельного поведения
- •Сотрудничество объектов
- •Процессы и потоки
- •Отображение нескольких потоков выполнения и взаимодействия между ними
- •Последовательность передачи сообщений между объектами
- •Деятельность объектов
- •Конечные автоматы
- •Параллельные подсостояния
- •Распределенные объекты
- •Визуализация всей системы
- •Визуализация развертывания систем
- •Архитектура системы
- •Проектирование компонентов для поддержки параллелизма
- •Как воспользоваться преимуществами интерфейсных классов
- •Подробнее об объектно-ориентированном взаимном исключении и интерфейсных классах
- •«Полуширокие» интерфейсы
- •Поддержка потокового представления
- •Перегрузка операторов "«" и "»" для pvm-потоков данных
- •Пользовательские классы, создаваемые для обработки pvm-потоков данных
- •Объектно-ориентированные каналы и fifo-очереди как базовые элементы низкого уровня
- •Связь каналов c iostream-объектами с помощью дескрипторов файлов
- •18 Cerr « «Ошибка при создании канала " « endl;
- •Доступ к анонимным каналам c использованием итератора ostream_iterator
- •Fifo-очереди (именованные каналы),
- •Интерфейсные fifo-классы
- •Каркасные классы
- •Реализация агентно-ориентированных архитектур
- •Что такое агенты
- •Агенты: исходное определение
- •Типы агентов
- •В чем состоит разница между объектами и агентами
- •Понятие об агентно-ориентированном программировании
- •§ 12:1 Дедукция, индукция и абдукция
- •Роль агентов в распределенном программировании
- •Агенты и параллельное программирование
- •Базовые компоненты агентов
- •Когнитивные структуры данных
- •Методы рассуждений
- •Типы данных предположений и структуры убеждений
- •Класс агента
- •Цикл активизации агента
- •Простая автономность
- •12.6. Резюме
- •Реализация технологии «классной доски» с использованием pvm-средств, потоков и компонентов
- •Модель «классной доски»
- •Методы структурирования «классной доски»
- •Анатомия источника знаний
- •Стратегии управления для «классной доски»
- •Реализация модели «классной доски» с помощью corba-объектов
- •Пример использования corba-объекта «классной доски»
- •Реализация интерфейсного класса black_board
- •Порождение источников знаний в конструкторе «классной доски»
- •Порождение источников знаний с помощью pvm-задач
- •Связь «классной доски» и источников знаний
- •Активизация источников знаний с помощью posix-функции spawn()
- •Реализация модели «классной доски» с помощью глобальных объектов
- •Активизация источников знаний с помощью потоков
- •Приложение a
- •Диаграммы классов и объектов
- •Диаграммы сотрудничества
- •Диаграммы последовательностей
- •A.2.3. Диаграммы видов деятельности
- •A.3. Диаграммы состояний
- •A.4. Диаграммы пакетов
- •Приложение б 26
Анатомия базовой corba-программы потребителя
Одной из самых распространенных моделей для применения распределенного программирования является модель «изготовитель-потребитель». В этой модели одна программа играет роль «изготовителя», а другая — «потребителя». Изготовитель создает некоторые данные или предлагает ряд услуг, которыми пользуется потребитель (например, наша программа могла бы по требованию генерировать уникальные номерные знаки). Предположим, потребитель — это программа, которая создает запросы на новые номерные знаки, а изготовитель — это программа, которая их генерирует. Обычно потребитель и изготовитель размещаются в различных адресных пространствах. Компоненты такой программы и действия, которые должно содержать большинство CORBA-программ потребителей, представлены на рис. 8.4.
Для взаимодействия с объектами, выполняемыми на других компьютерах или расположенными в других адресных пространствах, каждая программа— участница взаимодействия должна объявить ORB-объект. После этого программа-потребитель может получить доступ к его функциям-членам. Как показано на рис. 8.4, ORB-объект инициализируется путем следующего вызова:
При выполнении этой инструкции ORB-oбъект инициализируется. Для ORB-объектов используется тип CORBA: :ORB_var. В CORBA-реализациях объекты, тип которых помечается суффиксом _var, берут на себя заботу об освобождении базовой ссылки (в отличие от объектов, тип которых помечается суффиксом _ptr). Аргументы командной строки передаются конструктору ORB-объекта вместе с идентификатором orb_id. В данном случае идентификатором orb_id служит строка «mico-local-orb». Строка, передаваемал функции инициализации ORB_init (), зависит от конкретной CORBA-реализации. Полученный объект называют обслуживающим ( servant object ).
После инициализации ORB-объекта и объектного адаптера разработчику CORBA-приложения необходимо позаботиться об IOR-ссылке для удаленного объекта (объектов). Как показано на рис. 8.4, IOR-ссылка считывается из файла adding_machine.ior . IOR-ссылка была записана в этот файл в строковой форме. ORB-объект используется для преобразования IOR-ссылки из строки снова в объектную форму с помощью метода string__to_object (). Как показано на рис. 8.4, это реализуется с помощью следующего вызова:
CORBA::Object_var Obj = Orb->string_to_object(Ior.c_str());
Здесь функция lor. c_str () возвра щ ает IOR-ссылку в строковой форме, а объект Obj будет содержать IOR-ссылку в объектной форме. Объектнал форма IOR-ссылки затем претерпевает процесс «сужения», который подобен операции приведения типа в С++. В результате это г о процесса объектная ссылка приводится к соответствующему типу объекта. В данном случае «соответствую щ им» является тип adding_machine. Программа-потребитель (см. рис. 8.4) сужает IOR-объект, используя следующий вызов:
adding_machine_var Machine = adding_machine::_narrow(Obj);
При выполнении этой инструкции создается ссылка на объект типа adding_machine. Программа-потребитель м ожет теперь вызывать м етоды, определенные в IDL-интерфейсе для класса adding_machine, напри м ер:
Machine->add(500);
Machine->subtract(125) ;
При выполнении этих инструкций вызываются м ето д ы add( ) и subtract () удаленного объекта. Несмотря на то что рассматриваемал программа-потребитель сильно упрощена, она дает представление о базовых компонентах типичных CORBA-программ потребителя или клиента. Однако программа-потребитель должна работать совместно с программой-изготовителем. Поэтому мы рассмотрим упрощенную CORBA-программу, которая действует как изготовитель для программы-потребителя, показанной на рис. 8.4.