Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
YYYYYY_YY_YY_1.doc
Скачиваний:
9
Добавлен:
03.03.2016
Размер:
242.69 Кб
Скачать

Стандартная форма.

Z=CX->max

Ax<=b

x>=0 1)

Двойственной задачей к данной З.Л.П. называется задача вида

w=yb->min

YA>=C

Y>=0 2)

Задача 1) и 2) называется пара двойственных задач.

Если по этим правилам построить двойственную задачу к 2) то получим 1) . И в этом смысле задачи называются взаимозаменяемыми или сопряженными.

(y- строка)

(y1,y2..ym) a11

a21

am1

Экономический смысл : Экономически двойственную и прямую задачу можно интерпретировать прямая на max прибыль. , при выпуске х1 х2 х3 , а двойственную min -> расходов на ресурсы.

  1. b – сырье ; у1 у2 – оценка ресурсов.

Правило построения двойственных задач к общей з.Л.П.

  1. Количество переменных в двойственной задаче равно количеству ограничений в прямой задаче.

  2. Количество ограничений двойственной задачи равно числу переменных в прямой задачи.

  3. Вектор свободных элементов прямой задачи b является вектором коэффициентов двойственной задачи.

  4. Вектор коэффициентов функции цели C=(C1…Cn) прямой задачи служит вектором свободных членов системы ограничений двойственной задачи.

  5. Если прямой Z->max то в Д.З. W->min/

  6. Каждому ограничению – неравенству ai1x1+a12x2+..+ainxm , i=1,m Соответствует неотрицательная переменная yi>=0 ; i=1,m Д.З.

  7. Каждой неотрицательной переменной (xj>=0) j=1,n прямой задачи соответствует ограничения неравенства Д.З. a1jy1+a2jy2+…+amjym>=Cj (j=1,n)

  8. Матрица системы ограничений Д.З. служит транспонированная матрица прямой задачи.

  9. Каждом ограничению равенству прямой задачи ai1x1+ai2x2+…+ainxn=bi (i=1,m) соответствует свободная переменная yi><0

  10. Каждой свободной переменной xj><0 (j=1,n) соответствует ограничение равенства a1j+a2j+…+amjym=Cj

Теорема двойственности.

1. Если прямая и двойственная задача имеют допустимые решения Х и У , то они имеют оптимальное решение Х* и У* и причем значение функции в этих точках совпадают. Zmax=Wmin CX*=Y*b

Лемма №1

Для любых двух допустимых решений Х и У пары Д.З. справедливо СХ<=Уb

Док-во:

Z=CX->max W=yb->min

Ax<=b YA>=C

x>=0 y>=0

Допустим что X1 – любое допустимое решение П.З. , а Y1 – для Д.З.

Тогда Х1 удовлетворяет системе ограничений , т.е. АХ1<=b ¦ y1>=0 Y1A>=C¦x1>=0

Первое ограничение умножим на y1

Y1Ax1<=y1b

Y1Ax1>=Cx1

Cx1<=T<=y1b => Cx1<=y1b

Лемма № 2

Если для допустимых решений X* и У * , выполняется условие равенства СХ**b , то Х* и У* являются оптимальными решениями пары двойственных задач.

Док-во : Дана пара Д.З. Х* и У* допустимые решения. СХ**b , док-ть Х* и У* оптим. решение

Предположим что Х- ОДР (любое) , тогда по первой лемме СХ<=У*b , но У*b=Cx* => Cx=Cx* отсюда следует , что Х* т. максимума => у* т. минимума.

На основании графического анализа Д.З. исследовать разрешимость данной задачи в случаи разрешимости – найти экстремальные значение целевой функции.

  1. часть теоремы.

Если одна из задач не разрешима из-за не ограниченности функции , то и вторая задача не имеет решения по причине не совместимости систем ограничений.

Док-во :

Согласно первой лемме СХ<=уb , если прямая задача не имеет решения zmax->бесконечности , то, очевидно, что нет такого допустимого решения (у) в котором значение функции было бы больше бесконечности.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.