Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statistika_otvety (1).doc
Скачиваний:
37
Добавлен:
27.02.2016
Размер:
1.19 Mб
Скачать
  1. Средние линейные уравнения

Мудрые математики и статистики придумали более надежный показатель, хотя и несколько другого назначения – среднее линейное отклонение. Этот показатель характеризует меру разброса значений совокупности данных вокруг их среднего значения. В чем суть? Для того, чтобы показать меру разброса данных нужно вначале определиться, относительно чего этот самый разброс будет считаться. Обычно это средняя величина. Дальше нужно посчитать, насколько значения анализируемой совокупности данных находятся далеко от средней. Понятное дело, что каждому значению соответствует некоторая величина отклонения, но нас же интересует общая оценка, охватывающая всю совокупность. Поэтому рассчитывают среднее отклонение по формуле обычной средней арифметической. Но! Но для того, чтобы рассчитать среднее из отклонений, их нужно вначале сложить. И если мы сложим положительные и отрицательные числа, то они взаимоуничтожатся и их сумма будет стремиться к нулю. Чтобы этого избежать, все отклонения берутся по модулю, то есть все отрицательные числа становятся положительными. Вот теперь среднее отклонение будет показывать обобщенную меру разброса значений. В итоге, средне линейное отклонение будет рассчитываться по формуле:

где

a– среднее линейное отклонение,

x– анализируемый показатель, с черточкой сверху – среднее значение показателя,

n– количество значений в анализируемой совокупности данных,

Рассчитанное по указанной формуле среднее линейное отклонение отражает среднее абсолютное отклонение от средней величины по данной совокупности.

Допустим, имеется фирма по производству черенков для лопат. Каждый черенок должен быть 1,5 метра длиной, но, что еще важней, все должны быть одинаковыми или, по крайней мере, плюс-минус 5 см. Однако нерадивые работники то 1,2 м отпилят, то 1,8 м. Дачники недовольны. Решил директор фирмы провести статистический анализ длины черенков. Отобрал 10 штук и замерял их длину, нашел среднюю и рассчитал среднее линейное отклонение. Средняя получилась как раз, что надо – 1,5 м. А вот среднее линейное отклонение вышло 0,16 м. Вот и получается, что каждый черенок длиннее или короче, чем нужно в среднем на 16 см. Есть, о чем поговорить с работниками. На самом деле я не встречал реального использования данного показателя, поэтому пример придумал сам. Тем не менее, в статистике есть такой показатель.

  1. Сторона явления количественных и качественных показателей

1.1. Индексы количественных показателей

Необходимость в применении особых приемов построения индексов количественных показателей возникает, когда итоги по отдельным элементам сложного явления непосредственно несоизмеримы. Например, предприятие экспортирует станки, металл, товары широкого потребления. Если имеются сведения об экспорте продукции только в натуральном выражении, то динамику экспорта предприятия в целом нельзя охарактеризовать показателем:

,

где - количество продукции данного вида в натуральном выражении, экспортируемой в отчетном периоде;

- количество продукции данного вида в натуральном выражении, экспортируемой в базисный период.

Различные виды продукции неравноценны по количеству затраченного на них общественного труда и имеют разные потребительные стоимости. Поэтому было бы неправильно непосредственно суммировать итоги по этим видам продукции.

К индексам количественных (объемных) показателей относятся такие индексы, как индексы физического объема производства продукции, затрат на выпуск продукции, стоимости продукции, а также индексы показателей, размеры которых определяются абсолютными величинами. Используются различные виды индексов количественных показателей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]