
- •ЗАДАНИЯ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
- •080100.62 Экономика
- •Раздел. II. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
- •Тема 4. Вычисление производных
- •4.1. Вопросы для самостоятельного изучения
- •4.1.1. Производная функции
- •4.1.2. Правило дифференцирования по шагам
- •4.1.3. Геометрический смысл производной.
- •4.1.4. Правила и формулы дифференцирования
- •4.1.5. Таблица производных:
- •4.1.6. Производная сложной функции
- •4.1.7. Логарифмическое дифференцирование
- •4.1.8. Производные высших порядков
- •4.1.9. Дифференциал функции, его свойства
- •4.2. Контрольные вопросы
- •4.3. Практическое задание для самостоятельной работы
- •Тема 5. Исследование функций на экстремумы и интервалы монотонности
- •5.1. Вопросы для самостоятельного изучения
- •5.1.1. Условия возрастания и убывания функции
- •5.1.2. Точки экстремума функции, необходимое условие экстремума
- •5.1.6. Второй способ исследования функции на экстремум
- •5.1.7. Наибольшее и наименьшее значения функции на отрезке
- •5.1.8. Выпуклость, вогнутость графика функции
- •5.1.9. Точки перегиба. Необходимое и достаточное условие перегиба.
- •5.1.10. Исследование функции на выпуклость, вогнутость, точки перегиба
- •5.1.11. Асимптоты графика функции
- •5.1.12. Общая схема исследования функции
- •5.2. Контрольные вопросы
- •Тема 6. Исследование функций двух переменных
- •6.1. Вопросы для самостоятельного изучения
- •6.1.1. Экстремумы функции двух переменных, необходимое условие экстремума
- •6.1.2. Достаточные условия экстремума
- •6.2. Контрольные вопросы
- •6.3. Практическое задание для самостоятельной работы
- •Раздел. I. ПРЕДЕЛ ФУНКЦИИ
- •Тема 1. Элементы теории множеств. Понятие функции
- •1.1. Вопросы для самостоятельного изучения
- •1.1.1. Элементы теории множеств
- •1.1.2. Операции над множествами
- •1.1.3. Отображение множеств. Мощность множества.
- •1.1.4. Употребление математической символики. Кванторы общности, существования и единственности
- •1.1.5. Числовые множества
- •1.1.7. Окрестность точки
- •1.1.8. Понятие функции
- •1.1.9. Элементарные функции, свойства функции
- •1.1.10. Четность, нечетность.
- •1.2. Контрольные вопросы
- •Тема 2. Теория пределов
- •2.1. Вопросы для самостоятельного изучения
- •2.1.1. Числовая последовательность
- •2.1.2. Предел числовой последовательности
- •2.1.3. Бесконечно малые и бесконечно большие функции
- •2.1.4. Предел функции
- •2.1.5. Сравнение бесконечно малых функций
- •2.1.6. Замечательные пределы
- •2.2. Контрольные вопросы
- •Тема 3. Предел и непрерывность функции
- •3.1. Вопросы для самостоятельного изучения
- •3.1.1. Односторонние пределы
- •3.1.2. Необходимое и достаточное условие существования предела
- •3.1.3. Непрерывность функции
- •3.1.4. Точки разрыва и их классификация
- •3.1.5. Свойства непрерывных функций
- •3.2. Контрольные вопросы
- •3.3. Практическое задание для самостоятельной работы
- •Раздел. III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
- •Тема 7. Решение задач на нахождение неопределенных интегралов. Нахождение неопределенных интегралов различными методами
- •7.1. Вопросы для самостоятельного изучения
- •7.1.1. Неопределенный интеграл
- •7.1.2. Свойства неопределенного интеграла
- •7.1.3. Таблица интегралов
- •7.1.4. Метод интегрирования по частям
- •7.1.5. Рациональные дроби
- •7.1.6. Интегрирование простейших рациональных дробей
- •7.1.7. Интегрирование рациональных дробей
- •7.1.8. Метод замены переменной (метод подстановки)
- •7.1.9. Интегрирование иррациональных выражений
- •7.2. Контрольные вопросы
- •Тема 8. Вычисление определенных интегралов. Приложения определенного интеграла. Исследование сходимости несобственных интегралов
- •8.1. Вопросы для самостоятельного изучения
- •8.1.1. Определение определенного интеграла
- •8.1.2. Свойства определенного интеграла:
- •8.1.3. Вычисление определенного интеграла, физические приложения определенного интеграла
- •8.1.4. Интегрирование по частям в определенном интеграле
- •8.1.5. Формула замены переменной в определенном интеграле
- •8.1.6. Приложения определенного интеграла
- •8.1.7. Площадь плоской фигуры
- •8.1.8. Объем тела вращения
- •8.2. Контрольные вопросы
- •8.3. Практическое задание для самостоятельной работы
- •РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Формула (2) называется формулой замены переменной. Смысл этой формулы состоит в том, что интеграл в правой части либо является табличным, либо приводится к табличному легче, чем исходный. Для этого необходимо вы-
брать удачную замену (подстановку) x =ϕ(t). После того, как интеграл в пра-
вой части вычислен, необходимо вернуться к первоначальной переменной x ,
используя обратную функцию t =ψ(x).
7.1.9.Интегрирование иррациональных выражений
1.Рассмотрим интеграл вида
|
∫R(x, n ax + b )dx , |
(3) |
где R – рациональная функция своих аргументов. Сделаем замену переменной |
||
n ax + b = t ax + b = tn. |
|
|
Выразим x и найдем dx |
|
|
ax =tn −b |
x = 1 (tn − b) |
dx = n tn−1dt |
|
a |
a |
Используя формулу замены переменной (2), получим интеграл от рацио- |
||
нальной функции переменной t . |
|
|
2. Рассмотрим интеграл вида |
|
|
|
∫R(x, m xα , p xβ , ...)dx, |
(4) |
где R – рациональная функция своих аргументов. Найдем наименьшее общее кратное n показателей корней m, p, ... , входящих под знак интеграла. Сделаем замену переменной
n x =t x = tn dx = ntn−1dt .
Используя формулу замены переменной (2), получим интеграл от рациональной дроби.
7.2.Контрольные вопросы
1)Какая функция называется первообразной для функции f (x)? Сколько первообразных имеет данная функция?
50