Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_Asty_1179_ty_keptiru_Kizatova-2014.doc
Скачиваний:
83
Добавлен:
18.02.2016
Размер:
925.18 Кб
Скачать

Пәнінің оқу-әдістемелік кешені

«Астық түйірді кептіру технологиясы»

050728– «Өңдеу өндірістерінің технологиясы»

мамандығы үшін

ОҚУ- ӘДІСТЕМЕЛІК МАТЕРИАЛДАР

Астана 2014

  1. ГЛОССАРИЙ

Калибрования – ірілігі бойынша кейбір дәнді дақылдарды бірнеше фракицяларға бөліп сұрыптау үрдісін айтады.

Сепарирлеу – астық түйір қоспаларын бөлу үрдісін айтады, бұл үшін сепарратор машинасын қолданады.

Микроорганизмдер – астық түйірінің қаша алмайтын серіктестігі, олар астық түйірінің сапасын төмендететін негізгі факторлар болып табылады.

Сорбция – қоршаған орта буларынан әртүрлі газдар мен заттарды сіңіру қабылетін айтады.

ДӘРІСТІК МАТЕРИАЛДАР

1-тақырып: Кептірудің негізгі тәртібі мен түсінігі

Дәріс жоспары:

  1. Астық түйірді кептірудің тапсырмалары мен мақсаты

  2. Астық түйірді кептіру әдістері мен принциптері

Дәріс мақсаты: Кептіру әдістері, кептірудің мақсаты мен тапсырмаларын қарастырады.

Кептіру процесінің ағу мінездемесі және оның анализі.

Кептіру процесінде ылғалдылық, материал температурасы және кептіру жылдамдығының мезгілінде өзгеруі. Кептірудің жалпы ауданында мұндай графикалық ауысулар қисық кептіргіштер, кептіру жылдамдығы және температуралық қисық күйде болады. Мұндай графиканы құрау үшін қарапайым лабараториялық кептіру жағдайында көп емес сынама материалдан оның ылғалдылығымен температурасын уақытқа қарап анықтай отырып алады. Кептіру агентінің параметрлері (температураны, ылғалдылық пен жылдамдыққа байланысты) барлық тәжірибе барысында кунделікті болады.

Материалың ылғалдылығы кептіру процесі кезінде ылғал массасының даму жолын есептеу арқылы табады. Ол үшін белгілі бір уақыт аралығында кептіріліп жатқан материал өлшенеді.

Кептіру процесінің анализі.

Келтірілген кептіру заңдылықтары қарапайым схеме түрінде материалдан ылғалдылықты жою механизмін қолдануға мүмкіндік береді. Ылғал материал кептіргіш камераға түскен кезде материал қыза бастайды және ылғал оның бетінен ылғал булана бастайды. Ылғалдану алаңы кеуіп жатқан материал іші біртекті болады: жоғарғы бетінде ылғалдылық төмен, оған қарағанда қалыңырақ ылғалық концентрация градиенті пайда болады. Мұндай градиент әрекетінде ылғал сұйық түрінде материалдың жоғарғы бетімен араласа бастайды. Осыған байланысты ылғал ағыны материалдың гидравликалық кедергісінен өтуін ылғалдылық жылдамдығының қозғалысы төмендейді.

Кептірудің бірінші кезеңінде материалдың қабатынан ылғалдың ауысуы жеткілікті, оның беткі қабаты ылғал және ылғал мөлшері осы үстіңгі қабатқа көп мөлшерге гигроскопиялығы қалу үшін Uпов>Uг, Осыған байланысты материалдың жоғарғы бетіндегі бу қысымы материал бетінің күнделікті температурасы кезіндегі қаныққан бу Рн қысымымен тең. Материалдың жоғарғы бетімен ылғалдың интенсивті булануы кептірудің бірінші кезеңінде күнделікті және бос жоғарғы қабаттың аналогиялық теңдеуімен сипатталады. (Дальтон формуласы) :

Мұндағы, - булану интенсивтілігі, кг/(м2*сағ).

- ылғал алмасу коэффициенті, әртүрлі парциалдық қысымның қатынасында.

Рн- кептіру агентіндегі парциалды бу қысымы.

В- баромаетрлік қысым.

Ылғалалмасу коэффициенті, басты нұсқамен ауаның жылдамдығынан сонымен қатар пішініне және буланудың жоғарғы өлшеміне, кептіру агентінің үстіңгі ағын жағдайына және оның температурасына тәуелді.

Сондан бері кепкен материалдың жоғарғы қабатында гиграскокиялығы көп мөлшерде, яғни кептірудің барлық бірінші кезеңіндегі ауырлылығына, улы бу, материалдың жоғарғы бетінен бөлінетіндігі, қаныққан болып табылады, оның температурасы ылғалдың булану температурасына тең. Дымқыл термометр температурасын ылғалдың материал бетінен булануы оның суыту әрекетін көрсетеді және дымқыл термомтрдің үстіңгі тең температурасын жақындай отырып температураны үлкен деңгеймен қабылдауға болады.

Деңгей боынша кептіру процесінің дамуы кезінде материалды ылғал концентрациясының градиенті төмендіедіғ жоғарғы қабатқа түсуші ылғал саны азаяды. Ол материалдың үстіңгі бетінің ылғалдылығының төмендеуіне әкеп соқтрады. Ең соңында мындай сәт туады, материалдың үстіңгі бетіне оның ішкі қабатынан түсетін ылғал саны, материалдың жоғарғы бетінің ылғалдылығы Uпов>Uг болады. Осы сәт кептіру қисығында бірінші критикалық нүкте болып белгіленеді. Ылғал санының арасындағы келіспушілік.

Материалдың ішіндегі жылу және ылғал тасымал.

Кептіру кезінде материалда температуралық градиент және ылғал қалыптасады, әрекет кезінде жылу және ылғал тасымал жүреді.

Жылу ағынының тығыздығы Фурье теңдеуімен анықталды. Мұнда

(67)

Мұндағы, q-жылу ағынының тығыздығы.

-жылу өткізгіштік.

- температура градиенті.

Жылудың тасымалдануы, кептірудің барлық процесіндегідей, стационарлық емес процесс болып табылаы. Кептіру кезіндегі ылғалдың араласуы потенциал алмасудың әсер етуімен өтеді. Ылғалдың алмасу потенциалы жылу алмасу кезіндегі аналогиялық температурада параметр болып табылады.

Интнцивті кептрі кезінде будың көлемі бірден өседі, дәннің ішінде қалыптасқан, ол материалдың ішінде жалпы қысым градиентін туғызуы мүмкін. Аналогия бойынша жылу тасымалдаудың негізгі заңдылығы мына түрде жазылуы мүмкін.

(68)

Мұндағы, - ылғал ағынының тығыздығы, кг/(м2*с)

- ылғал тасымал кезіндегі потенциал градиенті, бірлік потноц./м.

- материалдың ылғал өткізгіштігі, кг/(м*с*бірлік потенц.)

- Фурье теңдігінің (67) жылу өткізгіштік коэффициентіне тең.

Ылғал тасымалдаудың потенциал градиенті , температура градиентіне тең, бу қысымының градиентіне немесе капиллеарлық потенциалға, потенциал градиентіне немесе осмотикалық қысым градиентіне пропорционал.

Изотермиялық жағдай кезінде ылғал тасымалдағыш потенциал ылғал мөлшерінг сызықты тәуелділәктен қабылдайды және ол дегеніміз

; (69)

Мұндағы, - материалдың орташа меншікті сиымдылығы, кгылғал/(кг құрғақ заттың бірлік потенциалы).

Теңдіктен шыға отырып (69), тасымал потенциалының градиенті арасындағы тәуелділікті және ылғал мөлшерінің градиентін келесі түрде көрсетуге болады:

(70)

Мұндағы, u- материалдың ылғал мөлшері.

(71)

Мұнда, - абсалютті құрғақ дененің тығыздығы.

- ылғал мөлшерінің градиенті, кг ылғал/( кг*с.в.м)

Ылғал диффузиясының коэффициенті материалдың ылғал инерциалды қасиетін сипатайды, ылғалөткізгіштің ішкі қарқындылығына көп мөлшерде әсерін тигізеді.

Бұл коэффициент материалды кептіру кезінде өтетін, сонымен қатар кептіргіштің рационалды тәртібін ғылыми зерттеу негізінде қажет.

Ылғал диффузиясының коффициенті материалдыің температурасы мен ылғалдылығына тәуелді.

13-суретте бидай дәнінің ылғал мөлшерінн ылғал диффузиясының коэффициент тәуелділігі көрсетілген. Ылғал диффузиясының коэффициенті күрделі тәуелділікпен өзгереді.

Диффузия коэффициентінің максималды мағанасы ылғал мөлшерінен 0,32-0,33 кг/кг дән келеді, ол бидай дәнінің гиграскопиялық нүктесіне жақын. Ылғал дифузиясы коэфициентінің дән температурасына байланысты тәуелділігі мынадай формуламен сипатталады.

(72)

Мұнда және-«базалық» температура (273+t) және Т.К. температурада ылғал дифузиясының коэфициент дәлдігі.

Мінезді критерий арасында, материалдық ылғал және жылуинерциялық қасиетінің қатынастарын анықтау үшін Лыков критериі қабылданған.

(73)

Дән үшін ол тез жылжиды, бірақ ылғалды аз береді.

Астықты суытқан кезде ылғалөткізгіш және термоылғалөткізгіш ағындарының бағыттары тура келеді.

Темиялық ылғал ағыны үшін мына түрде жазуға болады.

(74)

Мұндағы,

термоылғалөткізгіштік коэффициенті.

Ылғал ағынының жиынтығы

(75)

Мұндағы - ылғалөткізгіш ағынының тығыздығы, (кг/м2*с)

- термоылғалөткізгіш ағын тығыздығы, кг/м2*с

  • температура градиенті, град/м.

- термоылғалөткізгіш материалының коэффициенті, кг ылғ./(кг.с.зат.град).

Термоылғалөткізгіштік коэффициент немесе термоградиенттік коэффицинт температура градиентінің әрекетінен ылғалөткізгіштің қарқындылығын мінездейді. Ол материалдың ылғалдылығына байланысты, термиялық ылғал араласуы ылғалөткізгішке ұқсас.

Дән – ылғал инерциялы материал. Кептіру кезінде ол тез ысиды және ақырын ылғал береді. Кептіру процесі ылғалдың ішкі тасымалын меншіктейді. Сондықтан кетіру процесінің кез келген интенсификациясы әдісінде дәннің жоғарғы бетінің булану қарқындылыға арасында және ішкі ылғал алмасумен белгілі бір дәлдікке кез келген әдіспен қол жеткізу керек.

Бір дәнді кептіру («элементарлы» қабаты).

Дәннің маңызды біркелкі еместігі оның көлемі, ылғалдылығы сонымен қоса олардың әртүрлі жылуфизикалық және ылғалауысу қасиеті, бөлек алынған дәннің қыздыру жылдамдығы мен кептіру әркелгіні анықтайды. Осыған байланысты бір дәннің дәл кептіру қасиетін алу үшін сынамамен тәжірибе жүргізу қажет, ол бірнеше жүздеген немесе мыңдаған дәннен тұру керек. Тек осы жағдайда ғана дәннің барлық өзгергіштігі мен әртүрлісапалығын аңғаруға болады. Мұндай сынаманы бидай қабатының «элементарлы» бөлігі ретінде қарастырылады. Тығыздық қабатына қолдануын «элементарлы» қабат деп атаса, ал тығыз қабаттың өзін элементарлы қабатты суммасы деп қарастырады.

Айта кететін жайт «элементарлының» астында бір дән қабатының қалыңдығы ретінде түсінуіміз керек. Алайда тәжірибе жүзінде мұндай қабат көрсету моделі бола алмайды, себебі қабатта газдың қозғалуы бірқалыпсыз. Дисперсионды материалдық қабатында екі қатар бөлімшелері қажалған төсегіші бар, бөлімше қабатына ұқсас. Газ қозғалысының қасиеті қабатта бірқалыптылығы бөлікшелердің бірнеше қатардан өтуден кейі болады. Сондықтан бидайдың элементарлы қабаты, көрсеткіш моделі болу үшін, оның қалыңдығы минималды аз болуы қажет, бірақ дән, төсегіші бір тәртіппте тірі қиылысуда оның беткейінде орта есепке тірі қиылысуды бидай қабатында нормальды құрылымда болады. Бұндай шарт 3-4 дәнде қабат қалыңдығы қанағаттандырылады.

Элементарлы қабатта әрбір бөлек алынған дәннің біркелкі қызуы, дән температурасының туралығы оның сақталуында сапалығын қамтамасыз етеді.

Өту қасиетін қарастырса кептіру процесі, бидайдың элементарлы қабатқа 4 әртүрлі мәдениет мысалында: бидай, күріш, асбұршақ және күнбағыс болады.

Берілген суреттен қарасақ бидай дәнін кептіру мен қисық кептіруде көрінген кептіргіш агентінің жоғарғы температурамен (80-140°) салыстырмалы, көптеген өндірістік кептіргіштерге тән, бір бидайдың өте интенсивті кептіруіне тән, 15-50° С кейін ақ бидайдың температурасы 50-55° С жетеді және сулы термометр температурасынан көбірек артады. Термограммада бидай температурасынның ылғи да бір жері болмайды. Бидайды кептірудің мұндай интенсивтілігінде оның беткейі мен қабықшадай тез буланып, бидай булану ішіне зонасы кіреді. Кептіру жылдамдығы осындай уақыт аралығында ылғи да болады. Оның үлкенділігін бір бидай дәнін кептіру кезінде келесі формула арқылы анықтайды:

Мұнда Т- кептіру агантінің температурасы ° С

К - 0,011т-0,4340

W°-бастапқы бидай ылғалдылығы %

V- кептіру агентінің жылдамдығы м/с

ρ- кептіру агентінің тығыздығы кг/м

һ- қабат қалыңдығы,м

γ- бидай тығыздығы, кг/м

Температура жоғарлаған сайын кептіру агантінің булану процесінің ылғалдылығы тездейді, бірақ көп мөлшерде бидайдың кептіру интенсивтігі өседі.

Термограммада күріш, бидай сияқты, ылғи да бір бидай температурасының ауданы болмайды. Сонымен бірге кептіру жылдамдығы процесс бойы кетуші болады, бұл күріш дәннің спецификалық құрылымымен түсіндіріледі. Күріштегі тісті қабыршағы ядроға қарағанда аз ылғалдылығы бар. Түсті қабыршақтақтан тез ылғалдылығы кетіру үшін процестің басында дәннің ішіне булануы әкеледі, ядродан ылғалдылығын кетіру қабыршақ арқылы жүреді, бұл кептіру жылдамдылығын төмендетеді.

Күріштің бір дәні қисық кептіру келесі түрі формула бойынша анықтайды

Мұнда - бидай ылғалдылығының маңыздылығы %

- Бастапқы бидай ылғалдылығы, %

- Кептіру ұзақтылығы, мин

t-Кептіру агентінің температурасы, ° С

Бидай температурасы кез-келген уақытта формула бойынша анықталады:

Мұнда

Бір асбұршақ тұқымын кептіру процесін өтуімен көрсетіеді. Термограммада сонымен қоса температураның әрқашанда ауданы болмайды, кептіру жылдамдығы бүкіл процесс кезінде кетіп отырады.

Сулы күнбағыс тұқымында оның бастапқы ылғалдылығынан қауыздық ылғалдылығынан көбірек болады. Мысалы, барлық тұқымда 14,2% ылғалдылығы болса, соның ішінде қауыздық ылғалдылығы 19,1%, ал ядро 9,6% құрайды. Кептіру процесі кезінде қауыз тез әлсіреп және келесі барлық процес бойы ядродан сыртқы ортаға ылғалды тасқыш рөлін атқарады. Сонымен кептіру кинетикасы тұтастай күнбағыс тұқымы бастапқы кептіру периоды қауыздан ылғал беру жылдамдылығын анықтап, келесі ядродан ылғал беру жылуалмасуы шағын анықтайды.

Тығыз қозғалмайтын қабатта кептіру.

Тығыз қозғалмайтын қабат қасиеті әрқашанда дәнде келтіреледі. Кептіру агентінмен жуылатын дән беті өзгеріссіз. Кептіру интенсивтігі қозғалмайтын қабатта маңызды мөлшерде бидай мен кептіру агентінің ішкі жылу және ылғал алмасуымен анықталып бидай аралық кеңістіктен су буын әкетеді.

Тығыз қозғалмайтын қабатта кептіру кезінде қабаттың барлық қалыңдығында бидай ылғалдылығының төмендеуі бірақ жүрмейді, зоналар бойынша: басында кептіру агентінің кіру жағынан себу қабаты кебеді және кептіру зонасы ақырындап орта қабатқа ауысады, содан кейін орта қабат кебеді ,ал кептіру зоналары ары қарай ауысады. Қабатты вертикаль бойынша үрлеуде төменгі қабаттың ылғалдылығы сол уақыттан бастап төмендейді. Ортаңғы мен жоғарғы қабаттың ылғалдылығы алғашқы уақытта аз ғана өзгереді. Бастапқы ылғалдылық пен температура тәуелділігі бидай мен кептіру агентін бірегеше рет жоғарлатады (1-1,5 % ), өзгеріс немесе аздау төмендетілген болып қалады. Төменгі қабатты кептіру, бұл кезеңде кептіру ерекше интенсивті өтеді.

Кептіру зонасы ортаңғы қабатқа жеткенде, төменгі қабатты кептіру бұл уақытта аяқталады. Енді ортаңғы қабатты кептіру интенсивті өтеді, ал сондан кейін жоғарғы.

Мұндай кептіру тәсіліне жоғарғы және тәменгі қабат ылғалдылығының әркелкілігі тән, ұзақ уақыт кептіру кезінде аңғарылады. Тек қана жоғары қабат кепкенде, бұл әркелкілік қысқарылады. Төменгі немесе ортаңғы қабат үйіндісі ұзақ уақыт кептіру агентімен байланыста болады және оның ылғалдылығын қалыптывесқа жақыдатады. Сондықтан бидайды қатты кептіріп тастамау үшін қатысты ылғалдылығы 55-65% кептіру агенті қолданады, бидай ылғалдылығы 12-14% келуі керек. Бидайдыкептіруде қозғалмайтын қабатта кептіру агентінің температурасы қатаң шектеледі. Ол ереже бойынша бидайды кептіруде талап етілетін шарттан ауыспауы керек. Осыған байланысты кептіру процесі ұзақ және кептіру зонасы барлық қабатты басып алғанша дейін жүреді. Кептіру зонасының қабатынан өту жылдамдығы кептіру агенті мен бидай ылғалдылығының параметрлерінің тәуелді.

Кептіру агентінің қозғалмайтын қабаттан өтуі, оның параметрлерінің уақыт бойынша осыған байланысты ылғалдылық пен бидай температурасы өзгереді.

Қозғалмайтын қабат ты үрлеу қалыңдығын бастапқы бидай ылғалдылығының тәуелділігімен алынады. Әдетте ол 0,6-1,5м аралығынды болады, бірақ кейде ол 3,5 м дейін жеткізеді. Бірақ қабат қалыңдығында оның керілуі кезде өседі.

Қозғалмайтын қабатқа біркелкі емес кептіру, бірнеше перидты бидай қабаты үрлеу бағының өзгеруі мүмкін. Кептіруде қабатты реверсивті үрлеу кезінде бірінші периодта (кептіру агенті төменнен жоғарғы қарай қозғалады) төменгі қабат кебеді, ал ортаңғының өлігін ғана кебеді. Кептіру агентінің бағытының қозғалысы өзгергеннен кейін жоғарғы қабат интенсивті кебеді, төменгі қабат кепкен сияқты солай бірінші периодта кебеді. Төменгі қабат ылғалдылығы бұл уақытта бірнеше рет артады (0,5-1% ке)

Ортаңғы қабат ылғалдылығы бұл уақытта өзгереді: басында төмендеуі ақырындайды, содан кейі ылғалдылықөсе бастайды, максимумға жетіп қайтадан төмендейді. Ортаңғы қабатта қисық кептіру кезінде «шолп» пайда болады, бұл келесідей түсіндіріледі. Кептіру агентінің төменнен жоғарғы қозғалысы кезінде үйіндінің төменгі бөлігінде кептіру зонасы пайда болады, ол тез арада жоғары қарай ауысады. Ол ақырындап ортаңғы қабатын басады. Кептіру агентінің бағыты қозғалысы өзгергеннен кептіру зонасы үйіндінің жоғарғы бөлігінде пайда болады. Кептіру агенті жоғарғы қабатқа өткенде, жоғары ылғалдылығы бар, дымқылданып, ылғалдылықтың аз бөлігін ортаңғы және аз мөлшерде төменгі қабатқа тасымалдайды, онда ол құрғақ бидаймен сіңіп, оның ылғалдылығы жоғарлайды.

Ылғалдылықтың аз «шолп» қарамасақ ортаңғы қабатты кептіру бағытының өзгерткен кейін кептіру агентінің қозғалысы ақырындайды. Нәтижесінде бұл процесте ортаңғы қабаттың ылғалдылығы жоғары, төменгі және жоғары қабатқа қарағанда. Кептіру режимін былай таңдайды, яғни қалған ылғалдылығы 2 % аспауы керек.

Қолданылатын әдебиеттер:

1. Резчиков В.А., Налеев О.Н., Савченко С.В., Технология зерносушения. Учебник. Алматы, Изд. АтУ, 2000.

2. Гинзбург А.С., Основы теории и техники сушки пищевых продуктов, – М.: Пищевая промышленность, 1973.

3. Гинзбург А.С., Технология сушки пищевых продуктов, – М.: Пищевая промышленность, 1976.

4. Жидко В.И., Резчиков В.А., Зерносушение и зерносушилки, – М.: Колос, 1982г, -139с.

2-тақырып: Астық түйірлерін кептіру

  1. Дәріс жоспары:

  1. Жылумен кептіру және оның әртүрлігі

  2. Физика-химиялық үрдіс ретінде астық түйірді кептіру

Дәріс мақсаты: Конвективті кептіру, кептіру кезінде астық түйірлерінде болатын үрдістер

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]