
- •Содержание
- •Вступление
- •1. Жидкости и их физические свойства
- •1.1 Понятие жидкость
- •1.2 Важнейшие физические свойства жидкости
- •1.2.1 Пример решения задачи
- •1.2.2 Пример решения задачи
- •1.3 Модели жидкости
- •1.4 Контрольные вопросы
- •2. Гидростатика
- •2.1 Гидростатическое давление и его свойства
- •2.2 Дифференциальные уравнения равновесия жидкости
- •2.3 Основное уравнение гидростатики
- •2.4 Основные понятия гидростатики
- •2.4.1 Пример решения задачи
- •2.4.2 Пример решения задачи
- •2.5 Эпюры гидростатического давления
- •2.5.1 Пример решения задачи
- •2.6 Равновесие жидкости в сообщающихся сосудах
- •2.6.1Пример решения задачи
- •2.7 Закон Паскаля
- •2.8 Сила давления жидкости на плоские фигуры
- •2.9 Закон Архимеда
- •2.9.1 Пример решения задачи
- •2.10 Относительный покой жидкости
- •2.10.1 Пример решения задачи
- •2.11 Контрольные вопросы
- •2.12 Задания. Первая часть
- •3. Гидродинамика
- •3.1 Классификация движения
- •3.2 Струйчатое движение
- •3.3 Параметры струйки и потока жидкости
- •3.4 Уравнение неразрывности потока
- •3.5 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.6 Трубка Пито
- •3.7 Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.8 Режимы движения жидкости
- •3.9 Уравнение Бернулли для потока реальной жидкости
- •3.10 Классификация потерь напора
- •3.11 Потери напора по длине
- •3.11.1 Пример решения задачи
- •3.12 Местные потери напора
- •3.12.1 Примеры решения задач
- •3.13 Контрольные вопросы
- •4. Истечение жидкости
- •4.1 Основные понятия
- •4.2 Истечение жидкости через отверстия
- •4.2.1 Пример решения задачи
- •4.2.2 Пример решения задачи
- •4.3 Истечение через насадки
- •4.3.1 Пример решения задачи
- •4.4 Контрольные вопросы
- •Методики инженерных расчетов
- •5.1 Классификация трубопроводов и их расчеты
- •5.2 Расчет сифонов
- •5.2.1 Пример решения задачи
- •5.3 Расчет гидравлических сетей
- •5.3.1 Пример решения задачи
- •5.4 Расчет мощности насосного агрегата
- •5.4.1 Пример решения задачи
- •5.5 Контрольные вопросы
- •5.6 Задания. Вторая часть
- •Рекомендуемая литература
- •Гідрогазодинаміка
- •65029, М. Одеса, вул.. Дідріхсона, 8.
4.3.1 Пример решения задачи
Какое
количество воды вытечет через насадок
Вентури внутренним диаметром d
= 50 мм за время час
при постоянном напоре воды H
= 5 м? Какое количество воды вытечет при
тех же условиях через коноидальный
насадок?
Производительность насадка Вентури
м3/с.
За один час вытечет
м3.
За это же время через коноидальный насадок вытечет
м3.
4.4 Контрольные вопросы
Объясните сущность понятий «тонкая стенка» и «малое отверстие».
Объясните сущность понятий «сжатое сечение струи», «отверстие с пол-
ным и неполным сжатием», «сжатие совершенное и несовершенное».
От каких факторов зависит производительность отверстия?
Как определить производительность затопленного отверстия?
Что такое коэффициент расхода отверстия?
Опишите явление инверсии струи, приведите примеры инверсии при ис-
течении через круглое, квадратное, треугольное отверстия.
7. Что такое насадок? Охарактеризуйте виды насадков, применяемых в технике.
8. Объясните, почему производительность цилиндрического насадка выше
производительности отверстия такого же диаметра.
Методики инженерных расчетов
5.1 Классификация трубопроводов и их расчеты
При эксплуатации гидравлических систем возникают два режима (установившийся и неустановившийся) движения рабочих сред: воды, топлива, масел, пара, продуктов сгорания топлива, воздуха и т.д. Неустановившийся режим характеризуется резкой сменой давлений и скоростей в произвольном живом сечении потока с течением времени. Это можно наблюдать в периоды пуска и остановки насосов или компрессоров, регулировки режима с помощью запорно-регулирующей арматуры, в процессе циклической подачи топлива или масла в цилиндры ДВС. Однако большинство систем подавляющее количество времени эксплуатируется в установившемся режиме, поэтому основные приемы расчетов относятся именно к этому случаю.
Гидравлические системы – это совокупность труб различного диаметра, которые различаются характером соединения: последовательное, параллельное, разветвленное. Для удобства расчетов трубопроводы разделяют на простые и сложные, короткие и длинные.
Простые трубопроводы представляют собой последовательное соединение труб не обязательно одинакового диаметра, при условии постоянного расхода жидкости по длине. Сложные – это все остальные виды соединений труб, в том числе и последовательные с переменным расходом жидкости по длине.
Короткие трубопроводы – это такие, у которых местные потери соизмеримы с потерями напора по длине. При расчете длинных трубопроводов местными потерями напора можно пренебречь. Базовой расчетной зависимостью для любой системы является уравнение связи трех определяющих параметров: расхода жидкости Q (м3/с) и напора Н (м), которые обеспечивает насос, и диаметра трубопровода d (м). Поэтому возможны три постановки задачи: рассчитать Н по известным Q и d; определить Q по известным H и d; найти d по известным Q и H.
Для определения необходимого напора суммируют все потери напора
.
(109)
При
известных значениях расхода (Q) и диаметра
трубопровода (d)
скорость движения жидкости можно
определить как ,
и тогда расчетная зависимость для
короткого трубопровода приобретает
вид
.
(110)
Расчетная зависимость для длинных трубопроводов имеет более простой вид
.
(111)
Полученное значение напора увеличивают обычно на 5…8%. Для другой постановки задачи – определения Q по известным H и d, необходимо уравнение (110) или (111) решить относительно Q
.
(112)
Однако в связи с тем, что расхода неизвестен, невозможно рассчитать скорость для определения коэффициента гидравлического трения, значением которого необходимо задаться. После определения расхода необходимо проверить корректность полученного результата.
Третья задача – определение диаметра (d) по известным значениям расхода (Q) и напора (Н) - может быть решена только графоаналитическим методом. Для этого следует выбрать несколько значений d и для каждого из них с помощью базовой зависимости (110) или (111) найти значения напоров при заданном значении Q. После этого строится график зависимости d = f(H), с помощью которого по известному значению напора находится необходимая величина d. Однако трубы изготавливаются промышленностью в соответствии с сортаментом и поэтому найденное значение диаметра необходимо увеличить до ближайшего большего по сортаменту.