Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia.docx
Скачиваний:
1995
Добавлен:
09.02.2016
Размер:
8.73 Mб
Скачать

1. Безмиелиновое волокно

Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.

Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.

2. Миелиновое волокно

Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками.

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики - междоузлия, между которыми имеются немиелизированные участки – перехваты Ранвье.

Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса.

Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.

Молекулярная организация миелиновой оболочки (по Х.Хидену)

1-аксона; 2-миелин; 3-ось волокна; 4-белок (наружные слои); 5-липиды; 6-белок (внутренний слой); 7-холестерин; 8-цереброзид; 9- сфингомиелин; 10-фосфатидилсерин.

Химический состав миелина

Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белков. 90% всех липидов миелина приходиться на холестерин, фосфолипиды и цереброзиды. Миелин содержит немного ганглиозидов.

Белковый состав миелина периферической и центральной нервной системы различен. Миелин ЦНС содержит три белка:

  1. Протеолипид, составляет 35 – 50% от общего содержания белка в миелине, имеет молекулярную массу 25кДа, растворим в органических растворителях;

  2. Основной белок А1, составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим в слабых кислотах;

  3. Белки Вольфграма - несколько кислых белков большой массы растворимых в органических растворителях, функция которых неизвестна. Составляют 20% от общего содержания белка в миелине.

В миелине ПНС, протеолипид отсутствует, основной белок представлен белками А1 (немного), Р0 и Р2.

В миелине обнаружена ферментативная активность:

  1. холестеролэстеразы;

  2. фосфодиэстеразы, гидролизирующей цAMФ;

  3. протеинкиназы А, фосфорилирующей основной белок;

  4. сфингомиелиназы;

  5. карбоангидразы.

Миелин благодаря своему строению обладает более высокой стабильностью (устойчивостью к разложению), чем другие плазматических мембран.

Энергетический обмен нервной ткани

Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400 г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови. В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.

Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.

Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет, быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.

Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы артериальной крови. В физиологических условиях 85-90% глюкозы метаболизирует аэробным путем, а 10-15% - анаэробным.

В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты, в первую очередь глутамат и аспартат. В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела.

В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).

Полученная энергия тратится в первую очередь:

  1. на создание мембранного потенциала, который используется для проведения нервных импульсов и активного транспорта;

  2. для работы цитоскелета, обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;

  3. для синтеза новых веществ, в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;

  4. для обезвреживания аммиака.

На сегодняшний день основными нейромедиаторами являются:

1. Холинэргическая система.

2. Моноаминергические системы.

a. Дофаминовые рецепторы

b. Норадреналин и адреновые рецепторы

c. Серотонинергическая система

3. Глютаматергическая система

4. ГАМК--‐эргическая система.

5. Пептидергические системы

6. Пуринергические системы

104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена. Особенности водно-солевого обмена у детей.

Вода и растворенные в ней вещества, числе минеральные соли, создают внутреннюю среду организма, свойства к-й сохраняются постоянными или изменяются закономерным образом при изменении функционального состояния органов и клеток.

Вода тканей является не просто растворителем или инертным компонентом: она выполняет структурную и функциональную роль. Например, взаимодействие белков с водой обеспечивает их конформацию с преимущественным расположением гидрофильных групп на поверхности белковой глобулы, а гидрофобных — внутри. Еще большее значение имеет вода для структурной организации биологических мембран и их основы - двойного липидного слоя, в котором гидрофильные поверхности каждого монослоя взаимодействуют с водой, отграничивая от нее гидрофобное пространство внутри мембраны, между монослоями.

Вода служит средством транспорта веществ как в пределах клетки и окружающего ее межклеточного вещества, так и между органами (кровеносная и лимфатическая системы). Подавляющая часть химических реакций в организме происходит с веществами, растворенными в воде. Во многих химических превращениях вода служит реагентом: это реакции гидролиза, гидратации, дегидратации, образование воды при тканевом дыхании, гидроксилазных реакциях; у растений происходит фотоокисление воды, и образующийся при этом водород используется для восстановления углекислого газа при фотосинтезе.

Почти 2/ 3 массы тела человека приходится на воду. Суточное потребление воды составляет около 2 л, к этому добавляется 0,3-0,4 л метаболической воды, образующейся при тканевом дыхании. При отсутствии питья человек погибает через несколько суток в результате дегидратации тканей, когда количество воды в организме уменьшается примерно на 12 %.

Примерно 6 % всей воды организма находится в крови, 25 % — в межклеточном матриксе (интерстициальная вода). Воду этих двух бассейнов называют внеклеточной водой. Около 70 % воды организма — внутриклеточная вода. Между тремя основными бассейнами существует интенсивный обмен жидкостью. Например, перемещение жидкости (путем диффузии) через стенки капилляров в теле человека составляет около 1500 л в I мин.

Важнейшие параметры вводно-солевого гомеостаза - осмотическое давление, рН и объём внутриклеточной и внеклеточной жидкости. Изменение этих параметров может привести к изменению АД, ацидозу или алкалозу, дегидратации и отёкам тканей. Основные гормоны, участвующие в тонкой регуляции водно-солевого баланса и действующие на дистальные извитые канальцы и собирательные трубочки почек: антидиуретический гормон (АДГ), альдостерон и предсердный натриуретический фактор (ПНФ).

Антидиуретический гормон, или вазопрессин - пептид с молекулярной массой около 1100 Д, содержащий 9 аминокислот, соединённых одним дисульфидным мостиком. Синтезируется в нейронах гипоталамуса в виде предшественника препрогормона, который поступает в аппарат Гольджи и превращается в прогормон. В составе нейросекреторных гранул прогормон переносится в нервные окончания задней доли гипофиза (нейрогипофиз). Во время транспорта гранул происходит процессинг прогормона, в результате чего он расщепляется на зрелый гормон и транспортный белок - нейрофизин. Гранулы, содержащие зрелый антидиуретический гормон и нейрофизин, хранятся в терминальных расширениях аксонов в задней доле гипофиза, из которых секретируются в кровоток при соответствующей стимуляции.

Стимулом, вызывающим секрецию АДГ, служит повышение концентрации ионов натрия и увеличение осмотического давления внеклеточной жидкости. При недостаточном потреблении воды, сильном потоотделении или после приёма большого количества соли осморецепторы гипоталамуса, чувствительные к колебаниям осмолярности, регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение АДГ. Секреция АДГ происходит также в ответ на сигналы от барорецепторов предсердий. Изменение осмолярности всего на 1% приводит к заметным изменениям секреции АДГ.

Механизм действия. Для АДГ существуют 2 типа рецепторов: V1 и V2. Рецепторы V2, опосредующие главный физиологический эффект гормона, обнаружены на базолатеральной мембране клеток собирательных трубочек и дистальных канальцев - наиболее важных клеток-мишеней для АДГ, которые относительно непроницаемы для молекул воды. В отсутствие АДГ моча не концентрируется и может выделяться в количествах, превышающих 20 л в сутки (норма 1,0-1,5 л в сутки). Связывание АДГ с V2 (рис. 11-32) стимулирует аденилатциклазную систему и активацию протеинкиназы А. В свою очередь, протеинкиназа А фосфорилирует белки, стимулирующие экспрессию гена мембранного белка - аквапорина-2. Аквапорин-2 перемещается к апикальной мембране собирательных канальцев и встраивается в неё, образуя водные каналы. Это обеспечивает избирательную проницаемость мембраны клеток для воды, которые свободно диффундируют в клетки почечных канальцев и затем поступают в интерстициальное пространство. Поскольку в результате происходит реабсорбция воды из почечных канальцев и экскреция малого объёма высококонцентрированной мочи (антидиурез), гормон называют антидиуретическим гормоном. Рецепторы типа V1 локализованы в мембранах ГМК сосудов. Взаимодействие АДГ с рецептором V1 приводит к активации фосфолипазы С, которая гидролизует фосфатидилинозитол-4,5-бисфосфат с образованием инозитолтрифосфата и диацилглицерола. Инозитолтрифосфат вызывает высвобождение Са2+ из ЭР. Результатом действия гормона через рецепторы V1 является сокращение гладкомышечного слоя сосудов. Сосудосуживающий эффект АДГ проявляется при высоких концентрациях гормона. Поскольку сродство АДГ к рецептору V2 выше, чем к рецептору V1, при физиологической концентрации гормона в основном проявляется его антидиуретическое действие.

Альдостерон - наиболее активный минералокортикостероид, синтезирующийся в коре надпочечников из холестерола.

Синтез и секреция альдостерона клетками клубочковой зоны непосредственно стимулируются низкой концентрацией Na+ и высокой концентрацией К+ в плазме крови. На секрецию альдостерона влияют также простагландины, АКТГ. Однако наиболее важное влияние на секрецию альдостерона оказывает ренинангиотензиновая система.

Альдостерон не имеет специфических транспортных белков, но за счёт слабых взаимодействий может образовывать комплексы с альбумином. Гормон очень быстро захватывается печенью, где превращается в тетрагидроальдостерон-3-глюкуронид и экскретируется с мочой.

Механизм действия альдостерона.В клетках-мишенях гормон взаимодействует с рецепторами, которые могут быть локализованы как в ядре, так и в цитозоле клетки. Образовавшийся комплекс гормон-рецептор взаимодействует с определённым участком ДНК и изменяет скорость транскрипции специфических генов. Результат действия альдостерона - индукция синтеза: а) белков-транспортёров Na+ из просвета канальца в эпителиальную клетку почечного канальца; б) Nа++,-АТФ-азы, обеспечивающей удаление ионов натрия из клетки почечного канальца в межклеточное пространство и переносящей ионы калия из межклеточного пространства в клетку почечного канальца; в) белков-транспортёров ионов калия из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.

Суммарным биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку NaCl в организме, и возрастание экскреции калия.

Особенности водно-солевого обмена у детей

Рост ребёнка сопровождается относительным уменьшением общего содержания воды в организме, а также изменением в распределении жидкости между внеклеточным и внутриклеточным секторами.

Ранний детский возраст характеризуется высокой напряжённостью и неустойчивостью водно-солевого обмена, что определяется интенсивным ростом ребёнка и относительной незрелостью нейро-эндокринной и почечной систем регуляции. Суточная потребность в воде ребёнка первого года жизни составляет 100 - 165 мл/г, что в 2 - 3 раза превышает потребность взрослых. минимальная потребность в электролитах детей первого года жизни составляет: натрий 3,5 - 5,0; калий - 7,0 - 10,0; хлор - 6,0 - 8,0; кальций - 4,0 - 6,0; фосфор - 2,5 - 3,0 мг-экв/день.

При естественном вскармливании необходимые количества воды и солей ребёнок первого полугодия жизни получает с молоком матери, однако растущая потребность в солях определяет необходимость введения прикорма уже на 4 - 5 месяц. при искусственном вскармливании, когда ребёнок в избытке получает соли и азотистые вещества, вода, требующаяся для их выведения, должна включаться в рацион дополнительно.

Отличительной особенностью водно-солевого обмена в раннем детском возрасте является относительно большее, чем у взрослых, выделение воды через лёгкие и кожу. Оно может достигать половины и более принятой воды (при перегревании, отдышке и тому подобное). Потери воды при дыхании и за счёт испарения с поверхности кожи составляет 1,3 г/кг в час (у взрослых - 0,5 г/кг в час).

Это объясняется относительно большей величиной поверхности тела, приходящейся у детей на единицу веса, а также функциональной незрелостью почек. Почечная экскреция воды и солей у детей раннего возраста ограничена низкой величиной гломерулярной фильтрации, составляющей у новорождённых 1/3 - 1/4 почечной экскреции взрослого.

Суточный диурез в возрасте 1 месяц составляет 100 - 350, у детей 6 месяцев - 250 - 500, к году - 300 - 600, в 10 лет - 1000 - 1300 мл. При этом относительная величина суточного диуреза в расчёте на стандартную поверхность тела на первом году жизни (1,72 м2) в 2 - 3 раза больше чем у взрослых.

Ионный состав внеклеточной жидкости и плазмы крови в процессе роста не подвержен существенным изменениям. Исключение составляет период новорождённости, когда несколько повышенно содержание калия в плазме крови и наблюдается наклонность к метаболическому ацидозу. Моча у новорождённых и детей грудного возраста может быть почти полностью лишена электролитов.

Несовершенство регуляции водно-солевого обмена у детей раннего возраста служит причиной значительных колебаний осмотического давления внеклеточной жидкости. При этом на ограничение воды или избыточное введение солей дети реагируют солевой лихорадкой.

Соседние файлы в предмете Биохимия