Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матеріалознавство.doc
Скачиваний:
241
Добавлен:
05.02.2016
Размер:
2.53 Mб
Скачать

1. Матеріалознавство. Дайте визначення. Пояснити взаємозв’язок між будовою, кристалічною структурою матеріалу і його властивостями. Наведіть приклади.

Матеріалознавство - це наука, що вивчає в загальному зв’язку склад, будову, структуру і властивості матеріалів, а також закономірності їх зміни під тепловими, хімічними, механічними та іншими впливами.

В інженерній практиці для розв’язання багатьох технічних задач необ­хідно засвоїти основні поняття матеріалознавства.

Матеріал - речовина, призначена для виготовлення будь чого.

У виробничих процесах матеріали розглядають в залежності від їх призна­чення як основні та допоміжні.

Основні матеріали безпосередньо витрачаються на виготовлення продук­ції і складають її головний речовий склад.

Допоміжні матеріали застосовуються для виробництва продукції, але які не входять до її складу.

Склад матеріалу - кількісна характеристика вмісту в ньому компонентів. Склад розрізняють за природою компонентів. Так розглядають хімічний, мі­неральний склад.

Хімічний склад - кількісна характеристика вмісту в матеріалі хімічних елементів чи їх сполук.

Мінеральний склад - кількісна характеристика вмісту мінералів в матері­алі чи корисних копалинах.

Будова матеріалу - сукупність стійких зв’язків речовини, що забезпечу­ють його цілісність і тотожність самому собі, тобто забезпечення його влас­тивостей.

Структура матеріалу - форма, розміри та характер взаємного розташу­вання утворюючих матеріал компонентів.

Властивості матеріалу - признак, який складає відмітну особливість даного матеріалу.

Метою вивчення "Матеріалознавства" є встановлення зв’язків складу, будови і структури матеріалів з їх властивостями і на цій основі формування і забезпечення необхідних властивостей. Основна практична задача матеріало­знавства в галузі гірничої справи - вибір матеріалу, що має заданий комплекс властивостей, та його раціональне використання для підвищення ефективно­сті технологічних процесів гірничого виробництва.

2. Матеріалознавство. Структура та будова матеріалів. Макроструктура, мікроструктура. Тонка структура, пориста структура. Дати визначення.

Властивості будь-якої речовини чи матеріалів обумовлені не тільки хімічним складом, природою складових атомів, але значною мірою вони залежать від особливостей з’єднання атомів, молекул між собою, типом зв’язку тощо.

Існують поняття «хімічна будова» і «структура» речовин і мате-ріалів.

Будова – характер зв’язку чи послідовність з’єднання атомів у мо-лекули як структурні первинні одиниці речовини.

Структура – просторове розташування структурних одиниць (молекул), характер їхнього об’єднання в більш великі структурні елементи.     Відомо, що основними елементарними частками, з яких складаються речовини, є протони, нейтрони й електрони. З про-тонів і нейтронів складаються атомні ядра, а електрони заповнюють оболонки атома. Будова ядер атомів, періодичність заповнення обо-лонок електронами відображаються в таблиці Д. Менделєєва.

Аналіз матеріалів і готових виробів звичайно починають з розгля-ду їхньої зовнішньої будови, форми, кольору й характеру поверхні,тобто з вивчення макроскопічних ознак. Потім установлюють хіміч-ний склад і внутрішню структуру матеріалів, що дозволяє зрозумі-ти сутність формування і зміни споживних властивостей виробу під впливом різних факторів. Залежно від структурних елементів про-водять градацію структури твердих тіл: макроструктура, мікрострук-тура, тонка (внутрішня) структура. Первинні струк-турні одиниці (атоми й молекули), поступово поєднуючи, утворять усе більш великі структурні елементи. Так відбувається поступовий перехід від тонкої структури до макроструктури.

Макроструктура – сполучення великих структурних елементів (ниток, пучків волокон, шарів тощо) матеріалу, що можна бачити неозброєним оком чи через лупу (зі збільшенням приблизно до 10 разів). Вивченню макроструктури надають великого значення при органолептичній оцінці якості матеріалів і товарів: визначення, на-приклад, форми й густини ниток і виду їх переплетення в тканинах, характеру розташування шарів у деревині, пучків волокон шкіри, густини черепка порцеляни, наявності великої пористості й різних дефектів (подряпини, тріщини, сторонні включення й ін.). Про характер макроструктури пластмас можна судити по їхньому зламі: у ненаповнених пластмас макроструктура однорідна, злам склоподіб-ний, а наповнені пластмаси, навпаки, мають неоднорідну структуру.

Мікроструктура – це сполучення структурних елементів, види-мих за допомогою оптичного мікроскопу (зі збільшенням у десятки й сотні разів). При вивченні мікроструктури встановлюють характер сполучення волокон, форму зерен кристалів і клітинних утворень. Визначають розмір видимих структурних елементів, використову-ючи окулярмікрометри й об’єктмікрометри, вимірюють кути нахилу волокон у шкірі тощо.

Вивчення кристалічної мікроструктури металів і сплавів за до-помогою мікроскопів допомагає виявити залежність їх механічних і ряду фізичних властивостей від характеру термічної обробки виро-бів. Мікроскопічним дослідженням установлюють ступінь упоряд-кованості розташування структурних елементів, зокрема ступінь їх орієнтації, що дозволяє судити про ізотропності та анізотропності властивостей матеріалів і створювати оптимальні види структур.

Тонка (внутрішня) структура характеризується певним сполученням між собою атомів чи іонів молекул, а також більш великих структурних елементів, що не вдається спостерігати за допомогою оптичних мікроскопів. Останні дозволяють розрізняти частки з роз-міром лише не менш 300 нм, тобто того ж порядку, що і довжини хвиль видимої частини світлового спектра. Більш дрібні частки (ато-ми, молекули, пачки молекул, фібрили й ін.) виявляють методами рентгеноструктурного аналізу, електронної мікроскопії й електроно-графії, застосовуючи випромінювання з більш короткою довжиною хвилі. Довжина хвиль рентгенівських променів – від сотих часток до декількох ангстремів.

Методами дифракції рентгенівських променів і електронів уста-новлюють тип кристалічних решіток речовини. З його допомогою встановлюють ступінь кристалічності полімерів, характер орієнтації структурних елементів у волокні й ін.

Найважливішим методом вивчення тонкої структури речовин є електронна мікроскопія, заснована на застосуванні електронного мі-кроскопа, що особливо просвічує. Електронний мікроскоп дозволяє безпосередньо бачити й вивчати дрібні частки в інтервалі розмірів 10~4-10~8 див (агрегати атомів і молекул).

Структура багатьох матеріалів пронизана порами, що є проміжка-ми між структурними елементами, що порушують однорідність мате-ріалу. Вони мають різноманітні розміри і форму (осередку, капіляри й ін.).

Розрізняють пори:

-   наскрізні (капіляри), що проходять через усю товщу матеріалу;

-   замкнуті (ізольовані), що не сполучаються з зовнішнім середови-щем і заповнені повітрям чи іншим газом;

-   напівзамкнуті (не наскрізні), що ідуть у глиб матеріалу;

-   поверхневі, чи відкриті (невеликі западини), які обумовлюють нерівності поверхні матеріалу.

Характер пористості матеріалів обумовлює ряд їхніх властивос-тей. Так, основні властивості (гігієнічні) багатьох одягово-взуттєвих матеріалів пов'язані з їх мікропористою структурою. У деяких випад-ках наявність пор є наслідком неправильного підбору сировинних матеріалів, порушення режиму технологи (наприклад, пористість по-рцелянового черепка), при цьому пори погіршують якість виробів.