
- •43 Аннотация
- •Ведение
- •1. Основные компоненты скс
- •1.1. Задача дипломного проекта
- •1.2. Структура скс
- •1.2.1. Топология скс
- •1.2.2. Технические помещения
- •1.2.3. Подсистемы скс
- •1.2.4. Коммутация в скс
- •1.2.5. Принципы администрирования скс
- •1.2.6. Кабели скс
- •1.3. Понятие классов и категорий и их связь с длинами кабельных трасс
- •1.3.1. Классы приложений, категории кабелей и разъемов скс
- •1.3.2. Ограничения на длины кабелей и шнуров скс
- •1.4. Дополнительные варианты топологического построения скс
- •1.4.1. Варианты построения горизонтальной подсистемы скс
- •1.4.2. Топологии с централизованным администрированием
- •1.5. ПринципCableSharing
- •1.6. Гарантийная поддержка современных скс
- •1.7. Электрические компоненты скс
- •1.7.1. Коммутационные шнуры
- •1.7.2. Коммутационные панели
- •1.7.2.1. Коммутационные панели типа 110
- •1.7.2.2. Коммутационные панели типа 66
- •1.7.2.3. Коммутационные панели с розетками модульных разъемов
- •1.8. Выводы
- •2. Проектирование скс
- •2.1. Задание на проектирование
- •2.2. Стадии проектирования
- •2.2. Исходные данные
- •2.3. Архитектурная стадия проектирования
- •2.4. Телекоммуникационная стадия проектирования
- •2.4.1. Проектирование горизонтальной подсистемы
- •2.4.1.1. Выбор типа и категории телекоммуникационных розеток
- •2.4.1.2. Расчет горизонтального кабеля
- •2.4.1.2.1. Выбор типа и категории
- •2.4.1.2.2. Расчет количества
- •2.4.2. Проектирование подсистемы внутренних магистралей
- •2.4.3. Подсистема кабелей оборудования
- •2.4.3.1. Выбор метода подключения сетевого оборудования к кабельной системе
- •2.4.4. Проектирование административной подсистемы
- •2.4.5. Расчет количества и определение длины оконечных и коммутационных шнуров
- •2.5. Выводы
- •3.Проектирование силовой кабельной системы
- •3.1. Силовые кабельные системы в здании
- •3.2. Выделенная компьютерная силовая кабельная система
- •3.2.1 Распределение силовых компьютерных рабочих мест по группам
- •3.2.2. Расчет состава компонент компьютерной силовой кабельной системы
- •3.2.3. Расчёт однолинейных схем
- •3.3 Система бесперебойного питания
- •3.3.1. Система бесперебойного электропитания на все здание в целом
- •3.3.2 Принципы организации системы
- •3.3.3. Функционирование ибп
- •3.3.3.1. Режимы работы ибп
- •3.3.3.2. Работа от сети
- •3.3.3.3. Работа от батареи
- •3.3.4. Подготовка помещений для размещения оборудования системы бесперебойного питания
- •3.4. Выводы
- •4. Проектирование лвс Введение
- •4.1. Семиуровневая модельOsi
- •4.1.1. Обоснование модели osi
- •4.1.2. Уровни модели osi
- •4.2. Топология сетей
- •4.3. Распространенные сетевые архитектуры
- •4.3.1. Ethernet
- •4.3.1.1. Метод множественного доступа с контролем несущей и обнаружением конфликтов (csma/cd)
- •Ieee802.3
- •4.3.1.2. Форматы кадров вIeee802.3 иEthernet
- •4.3.1.3. СетьEthernetвблизи
- •4.3.1.4. Шины, сегменты и прочее
- •4.3.1.5. 10BaseT
- •4.3.1.6.Ethernetна волоконно-оптических кабелях
- •4.3.2. Высокоскоростные варианты сети Ethernet
- •4.3.2.1. КоммутируемаяEthernet
- •4.3.2.2. Дуплексная Ethernet
- •4.3.2.3. 100-VgAnyLan
- •4.3.3. Fast Ethernet
- •4.3.4. Gigabit Ethernet
- •4.3.5. Стандарт ieee 802.5: сети Token-Ring
- •4.3.5.1. Использование маркеров в сетях 802.5
- •4.3.5.2. СетьTokenRingсо скоростью передачи 16 Мбит/с
- •4.3.5. Стандарт fddi
- •4.3.5.1. Принцип действия сети fddi
- •4.3.5.2. Отказоустойчивость сетей fddi
- •4.4. Сетевое оборудование
- •4.4.1. Концентратор (Hub)
- •4.4.2. Мост (bridge)
- •4.4.3. Коммутатор (switch)
- •4.4.3.1. КоммутацияCut-Through
- •4.4.3.2. Коммутация Interium Cut-Through
- •4.4.3.3. Коммутация Store-and-Forward
- •4.4.3.4. Использование в одной сети разных скоростей передачи
- •4.4.3.5. Гибридные коммутаторы
- •4.4.3.6. Полнодуплексные связи
- •4.4.4. Маршрутизатор (router)
- •4.4.5. Перегрузка
- •4.5. Протокол snmp
- •4.6. Технология rmon
- •4.7. Понятие технологии виртуальных сетей
- •4.8. Проектирование лвс
- •4.8.5. Реализация первого варианта
- •4.8.5.1. Техническая математическая модель лвс
- •4.8.6. Реализация второго варианта
- •4.8.6.1. Расчет параметров для текущих требований
- •4.8.6.2. Выбор активного оборудования
- •4.8.6.3. Технические характеристики
- •4.8.7. Выбор оптимального технического решения
- •4.8.7.1. Определение значимости функций
- •4.8.7.2. Сравнение вариантов
- •4.9. Выводы
- •5. Определение затрат на разработку и внедрение структурированной кабельной системы и системы бесперибойного питания
- •5.1. Инвестиции в реальные активы
- •5.2. Сметная стоимость строительно-монтажных работ
- •5.3. Затраты на приобретение материалов и оборудования, необходимого для монтажа скс
- •5.4. Расчёт эксплуатационных расходов
- •5.5. Расчёт транспортных и командировочных расходов
- •Затраты на создание скс и сбп.
- •5.6. Расчёт затрат на создание лвс
- •5.6.1. Затраты на приобретение материалов и оборудования, необходимого для монтажа лвс
- •5.6.2. Преимущества и недостатки вариантов
- •5.7. Выводы
- •6. Обеспечение безопасности условий труда оператора системы бесперибойного питания
- •6.1. Введение
- •6.1.1. Анализ условий труда
- •6.1.2. Факторы, определяющие исход поражения электрическим током
- •6.2. Основные меры защиты от поражения электрическим током
- •6.2.1. Общие сведения
- •6.2.2. Защитное заземление
- •6.2.4. Напряжение шага
- •6.2.5. Требования по заземлению
- •6.2.6. Зануление
- •6.2.7. Защитное отключение
- •6.2.9. Использование малого напряжения
- •6.2.10. Выравнивание потенциалов
- •6.3. Расчёт заземления
- •6.4. Выводы
- •Заключение
- •Список литературы
2.4.1.2.2. Расчет количества
При расчете длины горизонтального кабеля учитываются следующие очевидные положения. Каждая телекоммуникационная розетка связывается с коммутационным оборудованием в кроссовой этажа одним кабелем. В соответствии со стандартом ISO/IEC11801 длина кабелей горизонтальной подсистемы не должна превышать 90 м. Кабели прокладываются по кабельным каналам. Принимаются во внимание также спуски, подъемы и повороты этих каналов.
Существует два метода вычисления количества кабеля для горизонтальной подсистемы:
метод суммирования;
эмпирический метод.
Метод суммированиязаключается в подсчете длины трассы каждого горизонтального кабеля с последующим сложением этих длин. К полученному результату добавляется технологический запас величиной до 10%, а также запас для выполнения разделки в розетках и на кроссовых панелях. Достоинством рассматриваемого метода является высокая точность. При отсутствии средств автоматизации, а также при проектировании СКС с большим количеством портов такой подход оказывается чрезмерно трудоемким. Он может быть рекомендован для использования только в случае наличия у разработчика специализированных программ автоматического проектирования (например, пакетаAutoCadилиCADdy), когда рутинные операции учета всех спусков, поворотов и т.д., а также подсчета общей длины каждого проброса выполняются средствами вычислительной техники.
Эмпирический методреализует на практике положение известной центральной предельной теоремы теории вероятностей и, как показывает опыт разработки, дает хорошие результаты для кабельных систем с числом рабочих мест свыше 30. Его сущность заключается в применении для подсчета общей длины горизонтального кабеля, затрачиваемого на реализацию конкретной кабельной системы, обобщенной эмпирической формулы.
Единственным существенным ограничением метода является необходимость предположения того, что рабочие места распределены по площади обслуживаемой территории равномерно. В случае нарушения этого условия рабочие места объединяются в группы, в которых с большей или меньшей точностью выполняется принцип равномерного распределения. Для каждой такой группы расчет выполняется отдельно. Этот прием позволяет свести задачу проектирования к предыдущему случаю. Несложно убедиться в том, что при дальнейшем дроблении групп вплоть до одиночного кабеля эмпирический метод переходит в метод суммирования.
На основании сделанных предположений средняя длина Lкабельных трасс принимается равной:
Lav =(L max+ L min)*0,5*Ks + X, (2.1)
где LmaxиLmin- длина кабельной трассы от точки ввода кабельных каналов в кроссовую до телекоммуникационной розетки соответственно самого близкого и самого далекого рабочего места, рассчитанная с учетом особенностей прокладки кабеля, всех спусков, подъемов, поворотов, межэтажных сквозных проемов (при их наличии) и т.д;
Ks- коэффициент технологического запаса - 1,1 (10%);
X- запас для выполнения разделки кабеля. Со стороны рабочего места он принимается равным 30 см. Со стороны кроссовой этот параметр зависит от ее размеров и численно равен расстоянию от точки входа горизонтальных кабелей в помещение кроссовой до самого дальнего коммутационного элемента опять же с учетом всех спусков, подъемов и поворотов.
Далее рассчитывается общее количество Ncrкабельных пробросов, на которые хватает одной катушки кабеля:
Ncr=Lcb/Lav, (2.2)
где Lcb- длина кабельной катушки (стандартные значения 305 м, 500 м и 1000 м), причем результат округляется в меньшую сторону до ближайшего целого.
На последнем шаге получаем общее количество кабеля Lc, необходимое для создания кабельной системы:
Lc = Lcb*Nto/Ncr (2.3)
где Nto— количество телекоммуникационных розеток.
Так как в нашем случае места распределены не очень равномерно, а кроме того на каждом из этажей их число небольшое то мы используем метод суммирования. При этом необходимо учесть, что вертикальный спуск кабеля берётся равным 3 м. Подсчёт информационного кабеля удобно выполнить в программе AutoCAD2000, в которой и создавались планы разводки кабеля к рабочим местам.
Общая длина кабеля необходимая на горизонтальную подсистему получилась равной = 9800 м.