
- •Аналіз підручника з математики для учнів 4 класу Богданович м.В. Математика
- •3. Відповідність розміщення матеріалу принципам дидактики:
- •5. Співвідношення арифметичного, алгебраїчного і геометричного матеріалу у підручниках:
- •7. Як підручник орієнтує вчителя на ознайомлення дітей з властивостями арифметичних дій, з формуванням математичних понять:
- •15.0Формлеиия підручника (апарат орієнтування у підручнику математики для початкових класів, зміст форзаців, якість ілюстративного матеріалу, шрифт підручника, виділення головного в уроці):
- •11. Перевірка і оцінка знань, умінь і навичок учнів з математики. Рівні та критерії оцінювання навчальних досягнень учнів.
- •1. Етап - ознайомлення зі змістом задачі
- •14. Прості задачі, пов’язані з поняттям різниці і кратного відношення двох чисел та методика навчання учнів їх розв’язуванню.
- •15. Складені задачі у початковому курсі математики. Прийоми ознайомлення учнів із складеною задачею. Способи розв’язання текстових задач (арифметичний, алгебраїчний, графічний, практичний).
- •16. Складові процесу навчання розв’язування складених задач (етапи: ознайомлення із змістом задачі, пошук способу розв’язання задачі).
- •17. Складові процесу навчання розв’язування складених задач (етапи: розв’язання задачі, перевірка розв’язання і відповідь, творча робота над задачею).
- •31. Усна і письмова нумерація чисел 21 - 100. Зміст матеріалу, що розглядається в даній темі. Випадки додавання і віднімання, що ґрунтуються на нумерації.
- •32. Усне додавання без переходу і з переходом через десяток у межах 100. Теоретичні основи обчислювальних прийомів.
- •33. Усне віднімання без переходу і з переходом через десяток у межах 100. Теоретичні основи обчислювальних прийомів.
- •34. Письмове додавання і віднімання двоцифрових чисел.
- •35. Ознайомлення з дією множення. Складання і засвоєння таблиць множення.
- •36. Ознайомлення з дією ділення. Зв’язок між діями множення і ділення. Складання і засвоєнні таблиць ділення. Види завдань на засвоєння табличних результатів множення і ділення.
- •37. Нумерація чисел 101- 1000. Випадки додавання і віднімання, що ґрунтуються на нумерації чисел
- •38. Усне додавання в межах 1000. Послідовність вивчення. Структурні записи та теоретичні основі обчислювальних прийомів.
- •39. Усне віднімання в межах 1000. Послідовність вивчення. Структурні записи та теоретичні основі обчислювальних прийомів.
- •40. Письмове додавання і віднімання в межах 1000. Алгоритми виконання.
- •41. Усне множення в межах 100 і 1000. Послідовність вивчення. Властивості множення, на яких ґрунтуються обчислювальні прийоми.
- •42. Усне ділення в межах 100 і 1000. Послідовність вивчення. Властивості ділення, на яки: ґрунтуються обчислювальні прийоми.
- •43. Методика ознайомлення учнів з властивостями множення суми на число і ділення числа на добуток. Застосування цих властивостей. Множення суми на число
- •Ділення числа на добуток.
- •44. Методика ознайомлення учнів з властивостями множення числа на суму і ділення суми на число. Застосування цих властивостей.
- •45. Письмове множення чисел в межах 1000
- •46.Письмове ділення чисел в межах 1000.
- •48. Основні положення десяткової системи числення. Принципи, що лежать в основі усної та письмової нумерації. Натуральний ряд чисел. Цілі невід’ємні числа.
- •49. Додавання багатоцифрових чисел. Узагальнення та систематизація знань учнів про дію додавання.
- •50. Віднімання багатоцифрових чисел. Узагальнення та систематизація знань учнів про дію віднімання
- •53. Іменовані числа. Прості і складені. Перетворення іменованих чисел. Дії з іменованими числами. Додавання і віднімання складених іменованих чисел, виражених у мірах довжини, маси і часу.
- •55.Зміна суми, зміна різниці залежно від зміни одного із компонентів цих дій. Використання знань про зміну суми і різниці. Використання способу округлення чисел.
- •56. Зміна добутку і зміна частки залежно від зміни одного із компонентів цих дій. Використання знань про зміну добутку і частки.
- •58.Величини, що вивчаються в початковому курсі математики. Поняття маси. Одиниці маси. Співвідношення між ними.
- •59.Методика формування часових уявлень в учнів початкових класів (година, хвилина, секунда, доба, місяць, рік, століття (вік), поняття „високосний рік”).
- •Формула площі прямокутника
- •63. Види задач, пов’язаних з дробами. Методика навчання розв’язанню задач на знаходження дробу від числа і числа за його дробом.
- •69. Формування поняття периметра геометричної фігури. Периметр прямокутника. Формула обчислення периметра прямокутника (квадрата) за його сторонами.
- •70. Ознайомлення з многокутниками та їх елементами (сторона, вершина, кут, діагональ). Класифікація (види) трикутників за кутами та сторонами.
- •72. Формування уявлень про геометричні фігури (тіла) у просторі: кулю, циліндр, конус, піраміду, прямокутний паралелепіпед (куб). Методика ознайомлення учнів з елементами прямокутного паралелепіпеда.
- •73. Позакласна робота з математики в початкових класах. Види позакласної роботи з математики, їх коротка характеристика.
69. Формування поняття периметра геометричної фігури. Периметр прямокутника. Формула обчислення периметра прямокутника (квадрата) за його сторонами.
Означення периметра многокутника вводять у 2 класі. Як і довжину ламаної лінії, периметри многокутників знаходять у результаті вимірювання довжин їх сторін з подальшим додаванням здобутих результатів.
У 3 класі вводять буквене позначення многокутників. Це дає змогу урізноманітнити постановку завдань з геометричним змістом. Наприклад, серед даних фігур назвати прямокутники, квадрати тощо.
Пропонуються різні вправи на побудову многокутників на папері в клітинку. Причому такі завдання ускладнюють поділом фігури на задані многокутники.
Учні продовжують виконувати вправи на знаходження периметра многокутника. При цьому їм потрібно показати різні способи обчислення. Якщо довжину прямокутника позначити буквою а, а ширину — буквою Ь, то ці способи можна записати так: а + Ь + а + Ь; а + а + Ь + Ь; а • 2 + Ь • 2; (а + Ь) • 2. Останній спосіб найзручніший, але учні повинні бути ознайомлені з усіма способами.
У 4 класі діти продовжують виконувати вправи на розпізнавання і побудову плоских фігур, розв'язують інші задачі з геометричним змістом.
Геометричні задачі, пов'язані з периметром, дещо ускладнюються, більшість з них пов'язана з поняттям площі фігури.
70. Ознайомлення з многокутниками та їх елементами (сторона, вершина, кут, діагональ). Класифікація (види) трикутників за кутами та сторонами.
У початкових класах многокутники і круг постійно використовуються як дидактичний матеріал. Під час вивчення чисел першого десятка різні фігури виступають лічильним матеріалом; паралельно учні уточнюють зображення окремих фігур, запам’ятовують їх назви. Окремі види многокутників вводяться одночасно з вивченням чисел 3, 4, 5, 6. наприклад, під час вивчення числа 3 діти ознайомлюються з трикутником, розглядають його елементи: сторони, кути, вершини. Ці поняття конкретизують за допомогою запитань: Скільки в трикутнику кутів? вершин? сторін?
Сторони, вершини і кути многокутника потрібно показувати учням на моделях плоских фігур. Важливо, щоб і діти правильно їх показували: вершини – це точки, тому указку слід направляти у відповідну точку; сторони – це відрізки, тому показують їх від однієї вершини до іншої, проводячи указкою вздовж усього відрізка; кут – віялоподібним рухом указки. Треба звернути увагу дітей і на те, що вершина многокутника є і вершиною відповідного кута.
Рекомендації:
а) Молодші школярі повинні зустрічатися з різними трикутниками. Це сприятиме правильному формуванню уявлень про трикутник та підготує учнів до вивчення його різних видів у 5 класі.
б) Розглядаючи різні моделі, діти повинні вчитися самостійно відтворювати геометричні образи в уяві, на папері.
а) В початкових класах слід використовувати вправи на: виділення знайомих фігур серед інших; порівняння фігур; конструювання фігур.
Ознайомлюючись із чотирикутниками діти мають виділяти серед них прямокутники і окремий від прямокутника – квадрат. Для цього учням пропонується серед деякої кількості чотирикутників вибрати такі, в яких кути прямі. Щоб переконати дітей у тому, що тільки прямокутник може мати всі кути прямі, класовод може запропонувати вправу: Закінчіть фігуру так, щоб вийшов трикутник з усіма прямими кутами. (Після численних спроб діти з’ясовують, що зробити цього не можна). Закінчіть фігуру, щоб дістати п’ятикутник або шестикутник, у якого б усі кути були прямі. (Зробити це теж неможливо). Звідси роблять висновок, що тільки чотирикутник може мати всі кути прямі. І цей чотирикутник називається прямокутником. Варто звернути увагу дітей на форму навколишніх предметів (або їх частин), і знайти серед них такі, що мають форму прямокутника: зошит, книжка, класна дошка, парта тощо.
У процесі вимірювання сторін прямокутника діти встановлюють, що його протилежні сторони рівні. На цьому етапі їх слід ознайомити із поняттям квадрата, яке визначається як прямокутник, у якого всі сторони рівні (або рівносторонній прямокутник).
Уявлення про фігури у дітей закріплюється під час вивчення цілого ряду вправ. Вправи різняться рівнем складності, розв’язування кожної потребує відповідного виду мислительної діяльності: репродуктивної, частково – пошукової або творчої. Під час їх використання до кожного учня слід застосовувати диференційований підхід.
Як відомо, дуже ефективним засобом навчання є гра, в процесі якої діти невимушено, мимовільно, з підвищеною активністю засвоюють нові знання. Дуже цікавою є старовинна гра «Танграм», в якій діти можуть складати найрізноманітніші малюнки за зразками, або придумувати їх самі.
У 3 класі вводяться означення периметра многокутника, знаходять в результаті вимірювання довжин їх сторін з наступним додаванням здобутих результатів.
Після введення буквених позначень многокутників учнів слід ознайомити із різними способами обчислення периметра. Якщо довжину прямокутника позначити буквою а, а ширину – буквою в, то ці способи можна записати так: а + в + а + в, а + а + в + в, а · 2 + в · 2, (а + в) · 2. Останній спосіб є найзручнішим, але учні повинні бути знайомі з усіма.
У 4 класі учні знайомляться з поняттям площі, і мають навчитися знаходити площу прямокутника.
За сторонами трикутники бувають різносторонні, рівносторонні, рівнобедрені.
За кутами гострокутні, прямокутні,тупокутні.
71. Методика навчання учнів елементарних геометричних побудов на папері в клітинку та нелінованому папері. Вироблення в учнів навичок правильного користування креслярськими приладами. Види задач геометричного змісту та методика навчання їх розв’язуванню.
Формування поняття про пряму і криву лінії можна почати показом спочатку обвислого, а потім натягнутого тонкого шнура. Учням варто запропонувати зігнути аркуш паперу довільної форми і в будь-якому напрямі. Розправивши цей аркуш, вони побачать, що на ньому утворилася пряма лінія. Тут можна сказати, що пряма лінія нескінченна, а бачимо ми лише її частину.
Навчаючи дітей проводити прямі лінії за допомогою лінійки, вчитель спочатку демонструє виконання такої роботи на аркуші білого паперу, прикріпленого до класної дошки.
Навчаючи дітей креслити коло за допомогою циркуля, вчитель спочатку демонструє таку побудову на аркуші білого паперу, прикріпленому до дошки. При цьому він ознайомлює їх з інструкцією побудови кола за допомогою циркуля:
1. Розвести ніжку циркуля і вістря олівця на величину заданого радіуса. Для цього голку треба встановити на нульову поділку лінійки, а вістря олівця — на поділку, числове значення якої дорівнює заданій величині радіуса.
2. Встановити голку в задану точку. Для цього правою рукою потрібно тримати олівець, а пальцем лівої руки спрямовувати вістря голки в задану точку.
3. Коло креслять в напрямі за годинниковою стрілкою, нахиливши циркуль трохи вперед у напрямі руху олівця. Починати креслити слід від нижньої точки кола (від себе).
4. Креслити коло треба однією правою рукою, тримаючи олівець за верхній кінець.
5. Лікоть правої руки спочатку відведений від корпуса, а відповідно до наближення вістря олівця до кінця (і початку) кола поступово наближається до нього.
Спочатку учні вчаться будувати коло на окремих аркушах паперу (на чернетках). Коли вони більш-менш правильно навчаться креслити коло, можна дозволити побудову кола в зошиті.