Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Hodgson E. Modern toxicology [2004].pdf
6.63 Mб


respiratory chain include excess salivation, giddiness, headache, palpitations, respiratory distress, and loss of consciousness. Potent inhibitors such as cyanide can cause death due to respiratory arrest immediately following poisoning.

Some chemicals do not interfere with electron transport leading to the consumption of molecular oxygen but rather interfere with the conversion of ADP to ATP. These uncouplers of oxidative phosphorylation function by leaking protons across the inner membrane back to the mitochondrial matrix. As a result a membrane potential is not generated, and energy required for the phosphorylation of ADP to ATP is lost. The uncoupling of oxidative phosphorylation results in increased electron transport, increased oxygen consumption, and heat production. The controlled uncoupling of oxidative phosphorylation is a physiologically relevant means of maintaining body temperature by hibernating animals, some newborn animals, and in some animals that inhabit cold environments. Chemicals known to cause uncoupling of oxidative phosphorylation include 2,4-dinitrophenol, pentachlorophenol, and dicumarol. Symptoms of intoxication include accelerated respiration and pulse, flushed skin, elevated temperature, sweating, nausea, coma, and death.


Joy, R. M. Neurotoxicology: Central and peripheral. In Encyclopedia of Toxicology, vol. 2, P. Wexler, ed. New York: Academic Press, 1998, pp. 389–413.

Stryer, L. Biochemistry, 4th ed. San Francisco: W. H. Freeman, 1999.

Eaton, D. L., and C. D. Klaassen. Principles of toxicology In Casarrett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed. C. D. Klaassen, ed. New York: McGraw-Hill, 2001, pp. 11–34.

Calabrese, E. J., and L. A. Baldwin. U-shaped dose-responses in biology, toxicology, and public health. An. Rev. Public Health 22: 15–33, 2001.