
Baer M., Billing G.D. (eds.) - The role of degenerate states in chemistry (Adv.Chem.Phys. special issue, Wiley, 2002)
.pdfrenner–teller effect and spin–orbit coupling |
647 |
APPENDIX B: PERTURBATIVE HANDLING OF THE RENNER–TELLER EFFECT AND SPIN–ORBIT COUPLING INELECTRONIC STATES OF TETRAATOMIC MOLECULES
We restrict ourselves again to symmetric tetraatomic molecules (ABBA) with linear equilibrium geometry. After integrating over electronic spatial and spin coordinates we obtain for electronic states in the lowest order (quartic) approximation the effective model Hamiltonian H ¼ H0 þ H0, which zerothorder part is given by Eq. (A.4) and the perturbative part of it of the form
|
|
|
2p |
T |
|
|
C |
|
|
q |
|
|
e |
ð |
Þ |
|
ð |
|
|
|
Þ |
|
|
|
|||||
H0 |
¼ aT oT qT4 þ aCoCqC4 |
þ b0poT oCqT2 qC2 |
|
|
|
|
|
||||||||||||||||||||||
|
|
|
T oT |
|
|
|
|
|
2i fT |
|
fC |
|
CoC |
|
|
|
|
|
|
||||||||||
|
þ |
b |
|
o o |
|
|
q2 2 |
½ |
|
|
þ |
e |
2i fT |
|
fC |
|
& |
|
|
||||||||||
|
|
|
|
|
|
T |
|
C |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
þ |
c |
|
q4 |
½ |
e |
|
4ifT |
þ |
e4ifT |
& þ |
c |
|
|
|
q4 |
e 4ifC |
|
|
||||||||||
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
|
C |
½ |
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
þ e4ifC & þ cTCpoT oCqT2 qC2 ½e 2ifT e 2ifC |
|
|
|
|
||||||||||||||||||||||||
|
þ |
e2ifT e2ifC |
& |
2 Aso |
|
|
|
|
|
|
|
|
|
|
|
ð |
B:1 |
Þ |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The dimensionless parameters aT ; . . . ; cTC appearing in the last expression are connected with the sums and differences of the adiabatic potentials as shown elsewhere [149,150]. This effective Hamiltonian acts onto the basis functions (A.1) with ¼ 2.
The zeroth-order Hamiltonian and the spin–orbit part of the perturbation are diagonal with respect to the quantum numbers K; ; P; uT ; lT ; uC, and lC. The terms of H0 involving the parameters aT ; aC, and b0 are diagonal with respect to both the lT and lC quantum numbers, while the b2 term connects with one another the basis functions with l0T ¼ lT 2; l0C ¼ lC 2. The c terms couple with each other the electronic species and . The selection rules for the vibrational quantum numbers are u0T=C ¼ uT=C; uT=C 2; uT=C 4.
As in the case of electronic states of tetraatomic molecules, because of generally high degeneracy of zeroth-order vibronic leves only several particular (but important) coupling cases can be handled efficiently in the framework of the perturbation theory. We consider the following particular cases:
Case Ba |
uC ¼ 0 |
|
Case Ba1 |
K ¼ uT þ 2 |
|
The zeroth-order vibronic wave function is juT uT |
0 0 þi. The zeroth-order |
|
energy is |
|
|
|
Eð0Þ ¼ ðuT þ 1Þ oT þ oC |
ðB:2Þ |

renner–teller effect and spin–orbit coupling |
649 |
The zeroth-order energy level is twofold degenerate. The corresponding vibronic basis functions are juT K þ2 0 0 i j1i and juT K 2 0 0 þi j2i. The first-order energy correction is
1=2 ¼ |
2 |
ð |
T þ |
|
u |
|
|
Þ |
o |
|
þ |
|
þ ðu |
|
þ |
|
Þ |
|
2 |
|
ð |
|
Þ |
Eð1Þ |
1 |
3u2 |
6 |
|
T |
|
K2 aT |
|
T |
|
2aCoC |
|
T |
|
1 |
|
b0poT oC |
1 |
D |
|
B:5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
where |
q |
|
|
|
|||||||||||||||||||
|
ð |
|
Þ |
||||||||||||||||||||
D ¼ |
16ðKaT oT þ AsoÞ2 þ 9ðuT2 K2Þ½ðuT þ 2Þ2 K2&cT2 oT2 |
|
|
|
B:6 |
|
The corresponding vibronic wave functions are of the form (A.13) and
(A.14) with D given by (B.6) and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
B ¼ 4ðKaT oT þ AsoÞ |
|
|
|
|
|
|
|
ðB:7Þ |
|||||||||
The second-order energy corrections are of the form |
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
E1ð2Þ ¼ c112 H11 þ c122 H22 þ 2c11c12H12 |
|
|
|
ðB:8Þ |
||||||||||||||||
|
|
|
|
|
|
E2ð2Þ ¼ c212 H11 þ c222 H22 þ 2c21c22H12 |
|
|
|
|||||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H11=22 ¼ |
1 |
ðuT |
þ 1Þ½17uT |
ðuT þ 2Þ 9KðK 4Þ&aT2 oT 9aC2 oC |
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||
4 |
|
|
|
|
|
|
||||||||||||||||||||
|
1 |
b02 4ðuT |
þ 1Þ2oT þ 4ðuT þ 1ÞoC |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
8 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
2 |
|
|
2 |
|
|
oT oC |
|
|
|
|
|
|
|
|
|
oT oC |
|
|
|||||||
þ ½uT ðK 2Þ & |
|
|
|
þ ðuT |
KÞðuT k þ 4Þ |
|
|
|
|
|
|
|||||||||||||||
oC oT |
oC þ oT |
|
|
|||||||||||||||||||||||
|
1 |
b22 4½uT ðuT þ 2Þ KðK 4Þ 4&oT þ ½uT ðuT |
2Þ |
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||
2 |
|
|
|
|
|
|
||||||||||||||||||||
þ KðK 4Þ þ 4& |
|
|
oT oC |
|
|
þ ½uT ðuT þ 6Þ þ KðK |
4Þ þ |
12& |
|
|
oT oC |
|
||||||||||||||
oC oT |
|
oC þ oT |
||||||||||||||||||||||||
|
1½ u ð |
uT |
þ |
Þ |
ð 2 |
|
|
|
Þ& |
|
ð |
uT |
þ |
Þ |
|
2 |
|
|
||||||||
|
3 T |
|
2 |
|
K K |
4 aT b0poT oC |
4 |
|
1 aCb0poT oC |
|
|
|||||||||||||||
|
|
ðuT þ 1Þð2 KÞcT oT ½17uT ðuT þ 2Þ 3Kð5K 12Þ& 6cCoC |
|
|
||||||||||||||||||||||
8 |
|
|
||||||||||||||||||||||||
|
1 2 |
|
|
|
|
ÞðuT K þ 2ÞoT þ ðuT KÞðuT |
|
|
|
|
|
oT oC |
|
|
||||||||||||
|
|
cTCf4ðuT K |
K þ 2Þ |
|
|
|||||||||||||||||||||
4 |
oC oT |
|||||||||||||||||||||||||
þ ðuT KÞðuT K þ 2Þ |
|
|
|
oT oC |
|
|
|
|
|
|
|
|
|
|
ðB:9Þ |
|||||||||||
oC þ oT |
|
|
|
|
|
|
|
|
|
650 |
miljenko peric´ and sigrid d. peyerimhoff |
|
|
|
||||||||||
and |
q |
|
|
|
|
|
|
|
|
|
|
|
||
|
17 |
|
|
|
|
|
|
|
|
|
||||
H12 ¼ |
ðuT2 K2Þ½ðuT þ 2Þ2 K2& |
ðuT þ 1ÞaT cT oT |
|
|
|
|||||||||
|
|
|
|
|
||||||||||
2 |
oT |
ðB:10Þ |
||||||||||||
þ 3b0cT poT oC þ |
2 b2cTC 4oT þ oC |
|
oT |
þ oC |
þ |
|||||||||
|
|
1 |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
oT oC |
|
oT oC |
|
|
If we put oT ¼ o; oC ¼ 0; aT ¼ a; cT ¼ c; aC ¼ b0 ¼ b2 ¼ cC ¼ cTC ¼ 0 all the formulas for case (Ba) reduce to those describing the R–T effect in triatomic molecules.
Case Bb K ¼ uT þ uC þ 2ð¼ KmaxÞ
The zeroth-order vibronic wave function is juT uT uC uC þi. The zerothorder energy is
|
|
|
|
|
|
|
|
Eð0Þ ¼ ðuT þ 1ÞoT þ ðuC þ 2ÞoC |
ðB:11Þ |
|||||||||||||
The firstand second-order energy corrections are |
|
|||||||||||||||||||||
|
|
|
|
|
Eð1Þ ¼ ðuT þ 1ÞðuT þ 2ÞaT oT þ ðuC þ 1ÞðuC þ 2ÞaCoC |
|||||||||||||||||
|
1 |
|
|
|
þ ðuT þ 1ÞðuC þ |
|
|
þ 2 Aso |
ðB:12Þ |
|||||||||||||
|
|
|
|
|
|
|
1Þb0poT oC |
|||||||||||||||
Eð2Þ ¼ |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|||
|
|
ðuT þ 1ÞðuT þ 2Þð4uT þ 9ÞaT2 oT |
|
ðuC |
þ 1ÞðuC þ 2Þð4uC þ 9ÞaC2 oC |
|||||||||||||||||
2 |
2 |
|||||||||||||||||||||
|
1 |
b0ðuT |
þ 1ÞðuC þ 1Þ ðuT þ |
1ÞoT þ ðuC þ 1ÞoC þ |
oT oC |
|
||||||||||||||||
2 |
oC þ oT |
|||||||||||||||||||||
b22 2uT ðuC þ 1ÞðuC þ 2ÞoT þ 2uCðuT þ 1ÞðuT þ 2ÞoC |
|
|||||||||||||||||||||
þ ðuT uCÞð2uT uC þ uT þ uC 1Þ |
oT oC |
|
|
|
|
|
||||||||||||||||
oC oT |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
oT oC |
|
||||
þ ½ðuT þ |
1ÞðuT þ 2Þ þ ðuC þ 1ÞðuC þ 2Þ& |
|
|
|
|
|||||||||||||||||
oC þ oT |
|
|||||||||||||||||||||
2ðuT þ |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
1ÞðuT þ 2ÞðuC þ 1ÞaT b0poT oC |
|
|
|
|
|
|||||||||||||||||
|
1ð |
uT |
þ |
Þð |
þ |
1 |
Þð |
þ Þ |
|
2 |
|
|
|
|
|
|||||||
|
2 |
|
|
|
1 uC |
|
uC |
2 aCb0poT oC |
|
|
|
|
|
|||||||||
|
|
ðuT þ 1ÞðuT þ 2ÞðuT þ 3ÞðuT þ 4ÞcT oT |
|
|
|
|
|
|||||||||||||||
4 |
|
|
|
|
|
|||||||||||||||||
|
1 |
|
ðuC þ 1ÞðuC þ 2ÞðuC þ 3ÞðuC þ 4ÞcC2 oC |
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||
4 |
|
|
|
|
|
|
||||||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
2 |
|
|
oT oC |
|
|||||||
|
|
|
ðuT þ 1ÞðuT þ 2ÞðuC þ 1ÞðuC þ 2ÞcTC |
|
|
ðB:13Þ |
||||||||||||||||
2 |
|
oC þ oT |

renner–teller effect and spin–orbit coupling |
651 |
For uC ¼ 0, the formulas (B.12) and (B.13) reduce to (B.3).
Case Bc K ¼ uT þ uCð¼ Kmax 2ÞuC > 0
The zeroth-order level is twofold degenerate. The corresponding vibronic basis functions are juT uT uC uC 2 þi j1i and juT uT 2uC uC þi j2i. The zeroth-order energy is (B.11). The first-order energy correction is
E1ð1=Þ2 ¼ ðuT2 þ 4uT þ 1ÞaT oT þ ðuC2 þ 4uC þ 1ÞaCoC |
|
|
|
|||||||||||||
þ ð |
uT |
þ |
1 |
Þð |
uC |
þ |
1 |
Þ |
|
|
|
þ |
2 Aso |
ð |
B:14 |
Þ |
2 |
|
|||||||||||||||
|
|
|
|
|
b0poT oC |
1 D |
|
|
|
|||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
ð |
|
Þ |
|||||||||||||
D ¼ 2 ½ðuT 1ÞaT oT ðuC 1ÞaCoC&2 þ 16uT uCb22oT oC |
|
B:15 |
|
The corresponding wave functions have the form (A.13) and (A.14). In the present case, D is given by (B.15) and
|
|
|
|
|
|
|
|
|
B ¼ 2ðuT 1ÞaT oT þ 2ðuC 1ÞaCoC |
|
|
|
|
|
|
ðB:16Þ |
||||||||||||||||||||
The second-order energy corrections have the form (B.8) with |
|
|
|
|||||||||||||||||||||||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
H11 ¼ |
|
|
ðuT þ 1ÞðuT |
þ 2Þð4uT þ 9ÞaT2 oT |
|
|
uCðuC þ 1Þð4uC þ 35ÞaC2 oC |
|
||||||||||||||||||||||||||||
2 |
2 |
|
||||||||||||||||||||||||||||||||||
|
1 |
|
|
2 |
|
|
þ 1Þ ðuT þ 1ÞðuC þ 1ÞoT |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
oT oC |
|
||||||||||||
|
|
b0ðuT |
þ ðuC þ 1Þ |
oC ðuC 1Þ |
|
|
|
|||||||||||||||||||||||||||||
2 |
oC oT |
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
oT oC |
|
|
|
2 |
2 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
þ |
2uC |
oC þ oT |
b2 2ðuT uC 2uT þ 7uT uC 6uT þ 6uC |
4ÞoC |
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
2 |
|
|
|
|
|
|
|
|
oT oC |
|
|
|
|
|
|
|
|
|||
þ 2uT uCðuC þ 1ÞoT þ ð3uT |
þ uC þ |
9uT þ uC þ 6Þ |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
oC þ oT |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
2 |
|
|
|
|
2 |
|
|
|
2 |
|
2 |
|
|
|
|
|
|
|
|
|
|
oT oC |
|
|
|
|
||||||
þ ð2uT uC |
2uT uC |
uT |
uC þ 4uT uC 3uT þ |
3uC 2Þ |
|
|
|
|||||||||||||||||||||||||||||
oC oT |
|
|
||||||||||||||||||||||||||||||||||
|
1ð |
uT |
þ |
1 |
Þð |
uT |
þ |
2 |
Þð |
uC |
þ |
Þ |
2 |
|
1 |
ð |
uT |
þ |
Þð |
|
þ |
5 |
Þ |
|
|
2 |
||||||||||
|
2 |
|
|
|
|
|
|
1 aT b0poT oC |
|
2uC |
|
1 |
|
uC |
|
|
aCb0poT oC |
|
4 ðuT þ 1ÞðuT þ 2ÞðuT þ 3ÞðuT þ 4ÞcT oT 4 uCðuC þ 1ÞðuC þ 2ÞðuC þ 35ÞcCoC
|
1 2 |
oT oC |
|
|
|
|
|
cTCuCðuT þ 1ÞðuT þ 2Þ 4oC þ ðuC þ 1Þ |
|
|
ðB:17Þ |
2 |
oC þ oT |
652 |
|
miljenko peric´ |
and sigrid d. peyerimhoff |
|
||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
H12 ¼ puT uCf12ðuT þ 1ÞaT b2poT oC þ 12ðuC þ 1ÞaCb2poT oC |
|
|||||||||
þ b0b2 4ðuT þ |
1ÞoT þ 4ðuC þ 1ÞoC þ ðuT þ uC þ 2Þ |
oT oC |
|
|||||||
oC þ oT |
|
|
||||||||
|
4 uC |
1 uC |
2 cCcTCpoT oC |
|
B:18 |
|||||
|
|
|
oT oC |
|
þ 2ÞcT cTCpoT oC |
|
||||
þ ðuT uCÞ |
oC |
oT |
þ 4ðuT þ 1ÞðuT |
|
||||||
þ ð þ |
Þð |
þ Þ |
g |
ð |
Þ |
The expression for H22 is obtained by interchanging indexes T and C on the right-hand side of Eq. (B.17) (cCT cTC). For uC ¼ 0; E2ð2Þ ¼ H22 and the second-order energy formula for E2 reduces to that derived for the case Ba2.
Case Bd uT ¼ 1; uC ¼ 1; K ¼ 0
In other cases, the zeroth-order vibronic levels are generally more than twofold degenerate and the perturbative handling is much more complicated. An exception is the case uT ¼ 1; uC ¼ 1; K ¼ 0 with the twofold degenerate zeroth-order level. The basis functions are j1 1 1 1 i j1i and j1 1 1 1 þi j2i. The zeroth-order energy is
|
Eð0Þ ¼ 2oT þ 2oC |
|
|
|
ðB:19Þ |
||||||
The first-order energy correction is |
|
|
|
|
|
|
|
||||
1=2 ¼ |
o þ |
o þ |
|
2 |
|
ð |
|
Þ |
|||
Eð1Þ |
6aT T |
6aC C |
4b0poT oC |
|
1 |
D |
|
B:20 |
|
||
|
|
|
|
||||||||
where |
q |
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|||||
|
D ¼ 4 2Aso2 þ 4cTC2 oT oC |
|
|
|
ðB:21Þ |
||||||
The second-order energy correction is |
D H12 |
|
|
|
|
|
|
||||
|
E1ð2=Þ2 ¼ H11 |
|
|
|
ðB:22Þ |
||||||
|
|
|
8cTCpoT oC |
|
|
|
|
|
|
|
renner–teller effect and spin–orbit coupling |
653 |
||||||||||||||||
with |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
2 |
|
|
|
2 |
|
|
|
|
|
oT oC |
|
||||
H11 ¼ 39aT oT |
39aCoC |
2b0 2oT þ 2oC |
þ |
|
|
|
|
|
|
||||||||
oC þ oT |
|
||||||||||||||||
2 |
|
|
|
þ |
|
|
|
|
|
|
|||||||
|
|
oT oC |
|
24aT b0poT oC 24aCb0poT oC |
|||||||||||||
12b2 oT þ oC þ |
oC |
|
|
oT |
|||||||||||||
2 |
|
2 |
|
|
|
2 |
|
|
|
|
|
oT oC |
|
||||
54cT oT 54cCoC |
2cTC 2oT þ 2oC þ |
|
|
|
|
ðB:23Þ |
|||||||||||
oC þ oT |
|||||||||||||||||
|
|
8b0cTCoT |
|
|
8b0cTCoC |
|
4b0cTC oT o |
B:24 |
|||||||||
H12 ¼ 24ðaT cTC |
þ aCcTC þ 2b2cT þ 2b2cCÞpoT oC |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C |
|
ð Þ |
|
|
|
|
|
|
|
|
|
oC þ oT |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
Acknowledgments
We wish to thank all our colleagues who collaborated with us in the calculations presented in the calculations presented in this chapter. One of us (M.P.) likes to thank the Deutsche Forschungsgemeinschaft for financial support.
References
1.P. Jensen and P. R. Buenker, eds., Computational Molecular Spectroscopy, John Wiley and Sons, Inc., 2000.
2.P. Jensen, G. Osmann, and P. R. Buenker, in Computational Molecular Spectroscopy, P. Jensen and R. J. Bunker, eds., John Wiley & Sons, Inc., New York 2000, p. 485.
3.J. M. Brown, in Computational Molecular Spectroscopy, P. Jensen and R. J. Bunker, eds., John Wiley & Sons, Inc., New York 2000, p. 517.
4.G. Herzberg and E. Teller, Z. Phys. Chem. (B) 21, 410 (1933).
5.G. Herzberg, Moleculer Spectra and Molecular Structure III. Electronic Spectra of Polyatomic Molecules, Van Nostrand, New York, 1967.
6.M. Born and R. Oppenheimer, Ann. Phys (Leipzig) 84, 457 (1927).
7.R. Renner, Z. Phys. 92, 172 (1934).
8.Ch. Jungen and A. J. Merer, in Molecular Spectroscopy, Modern Research, K. N. Rao, ed., Vol. 2, Academic Press, New York, 1977, p. 127.
9.K. Dressler and D. A. Ramsay, J. Chem. Phys. 27, 971 (1957).
10.K. Dressler and D. A. Ramsay, Philos. Trans. R. Soc. Ser. A 251, 553 (1958).
11.G. Duxbury, Molecular Spectroscopy, Vol. 3, Billing & Sons, Guilford and London, 1975, p. 497.
12.J. M. Brown and F. Jørgensen, in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds., John Wiley & Sons, Inc., New York, 1983, Vol. 52, p. 117.
13.H. Ko¨ppel, W. Domcke, and L. S. Cederbaum, Advances in Chemical Physics, I. Prigogine and A. C. Rice, eds., John Wiley, New York, 1986, Vol. 67, p. 59.
14.H. Ko¨ppell and W. Domcke, Encyclopedia of Computational Chemistry, P. V. R. Schleyer et al., eds., Wiley, New York, 1999, p. 3166.
654 |
miljenko peric´ and sigrid d. peyerimhoff |
15.P. R. Buenker and P. Jensen, Molecular Symmetry and Spectroscopy, NCR Research Press, Ottawa, 1998.
16.M. Peric´, S. D. Peyerimhoff, and R. J. Buenker, Int. Rev. Phys. Chem. 4, 85 (1985).
17.M. Peric´, B. Engels, and S. D. Peyerimhoff, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, S. R. Langhoff, ed., Kluwer, Dordrecht, 1995, p. 261.
18.M. Peric´, B. Ostojic´, and J. Radic´-Peric´, Phys. Rep. 290, 283 (1997).
19.J. M. Brown, J. Mol. Spectrosc. 68, 412 (1977).
20.R. J. Buenker, M. Peric´, S. D. Peyerimhoff, and R. Marian, Mol. Phys. 43, 987 (1981).
21.M. Peric´, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 49, 379 (1983).
22.W. Pauli, Z. Phys. 43, 601 (1927); G. Breit, Phys. Rev. 34, 553 (1930).
23.B. A. Hess, C. M. Marian, and S. D. Peyerimhoff, Advanced Series in Physical Chemistry: Modern Electronic Structure Theory, C.-Y. Ng and D. R. Yarkony, eds., Singapore: World Scientific, 1995 p. 152; B. A. Hess and C. M. Marian, in Computational Molecular Spectroscopy,
P.Jensen and P. R. Bunker, eds., John Wiley & Sons, Inc., 2000, p. 169.
24.Ch. Jungen and A. J. Merer, Mol. Phys. 40, 1 (1980).
25.Ch. Jungen, K-E. J. Hallin, and A. J. Merer, Mol. Phys. 40, 25 (1980).
26.Ch. Jungen, K-E. J. Hallin, and A. J. Merer, Mol. Phys. 40, 65 (1980).
27.Ch. Jungen and A. J. Merer, Mol. Phys. 40, 95 (1980).
28.M. Peric´, M. Krmar, J. Radic´- Peric´, and Lj. Stevanovic´, J. Mol. Spectrosc. 208 271 (2001).
29.M. Peric´ and M. Krmar, J. Serb. Chem. Soc. 66 613 (2000).
30.S. A. Beaton, Y. Ito, and J. M. Brown, J. Mol. Spectrosc. 178, 99 (1996).
31.S. A. Beaton and J. M. Brown, J. Mol. Spectrosc. 183, 347 (1997).
32.J. T. Hougen, J. Chem. Phys. 36, 1874 (1962).
33.M. Peric´, S. D. Peyerimhoff, and R. J. Buenker, Can. J. Chem. 59, 1318 (1981).
34.M. Peric´ and M. Krmar, Bull. Soc. Chim. Beograd. 47, 43 (1982).
35.R. N. Dixon, Mol. Phys. 9, 357 (1965).
36.C. F. Bender and H. F. Schaefer, III, J. Mol. Spectrosc. 37, 423 (1971); V. Staemmler and
M.Jungen, Chem. Phys. Lett. 16, 187 (1972).
37.G. Herzberg and J. W. C. Johns, Proc. R. Soc. London Ser. A 298, 142 (1967).
38.C. Eckart, Phys. Rev. 47, 552 (1935).
39.E. B. Wilson and J. B. Howard, J. Chem. Phys. 4, 269 (1936).
40.E. B. Wilson, E. B. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.
41.J. K. G. Watson, Mol. Phys. 15, 479 (1968).
42.J. K. G. Watson, Mol. Phys. 19, 465 (1970).
43.A. R. Hoy, I. M. Mills, and G. Strey, Mol. Phys. 24, 1265 (1972).
44.J. Tennyson, B. T. Sutcliffe, J. Mol. Spectrosc. 101, 71 (1983).
45.D. Estes and D. Secrest, Mol. Phys. 59, 569 (1986).
46.H. Wei and T. Carrington, Jr., J. Chem. Phys. 107, 2813 (1997); 107, 9493 (1997).
47.M. Mladenovic´, J. Chem. Phys. 112, 1070 (2000); 112, 1082 (2000), 113, 10524 (2000).
48.S. Carter and N. C. Handy, Mol. Phys. 47, 1445 (1982).
49.S. Carter, N. C. Handy, and B. T. Sutcliffe, Mol. Phys. 49, 745 (1983).
50.S. Carter and N. C. Handy, Mol. Phys. 52, 1367 (1984).
renner–teller effect and spin–orbit coupling |
655 |
51.S. Carter, N. C. Handy, P. Rosmus, and G. Chambaud, Mol. Phys. 71, 605 (1990).
52.G. D. Carney, L.L Sprandel, and C. W. Kern, Adv. Chem. Phys. 37, 305 (1968).
53.E. K. C. Lai, Master’s Thesis, Department of Chemistry, Indiana University, Bloomington, IN, 1975.
54.B. Podolsky, Phys. Rev. 32, 812 (1928).
55.P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Research Press, Ottawa. 1998.
56.M. Peric, M. Mladenovic, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys. 82, 317 (1983).
57.J. H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).
58.J. M. Brown and B. J. Howard, Mol. Phys. 31, 1517 (1976).
59.R. N. Zare, Angular Momentum, John Wiley & Sons, Inc., 1988.
60.J. T. Hougen, P. R. Bunker, and J. W. C. Johns, J. Mol. Spectrosc. 34, 136 (1970).
61.P. R. Bunker and J. M. R. Stone, J. Mol. Spectrosc. 41, 310 (1972).
62.A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc. 52, 439 (1974).
63.P. R. Bunker and B. M. Landsberg, J. Mol. Spectrosc. 67, 374 (1977).
64.A. R. Hoy and P. R. Bunker, J. Mol. Spectrosc. 74, 1 (1979).
65.P. Jensen and P. R. Bunker, J. Mol. Spectrosc. 118, 18 (1986).
66.P. Jensen, J. Mol. Spectrosc. 128, 478 (1988).
67.P. Jensen, J. Chem. Soc. Farady. Trans. 2 84, 1315 (1988).
68.A. Sayvetz, J. Chem. Phys. 7, 383 (1939).
69.J. A. Pople and H. C. Longuet-Higgins, Mol. Phys. 1, 372 (1958).
70.A. D. Walsh, J. Chem. Soc. 2260, (1953).
71.J. A. Pople, Mol. Phys. 3, 16 (1960).
72.J. T. Hougen, J. Chem. Phys. 36, 519 (1962).
73.A. J. Merer and D. N. Travis, Can. J. Phys. 43, 1795 (1965).
74.R. Barrow, R. N. Dixon, and G. Duxbury, Mol. Phys. 27, 1217 (1974).
75.K. F. Freed and J. R. Lombardi, J. Chem. Phys. 45, 591 (1966).
76.J. W. Cooley, Math. Comp. 15, 363 (1961).
77.I. Dubois, G. Duxbury, and R. N. Dixon, J. Chem. Soc. Faraday Trans. 2, 71, 799 (1975).
78.G. Duxbury and R. N. Dixon, Mol. Phys. 43, 255 (1981).
79.G. Duxbury, J. Chem. Soc. Faraday Trans. 2, 78, 1433 (1982).
80.G. Duxbury and Ch. Jungen, Mol. Phys. 63, 981 (1988).
81.A. Alijah and G. Duxbury, Mol. Phys. 70, 605 (1990).
82.G. Duxbury, A. Alijah, and R. Trieling, J. Chem. Phys. 63, 981 (1993).
83.G. Duxbury, B. McDonald, and A. Alijah, Mol. Phys. 89, 767 (1996).
84.G. Duxbury, B. McDonald, M. Van Gogh, A. Alijah, CH. Jungen, and H. Palivan, J. Chem. Phys. 108, 2336 (1998).
85.G. Duxbury, A. Alijah, B. McDonald, and Ch. Jungen, J. Chem. Phys. 108, 2336 (1998).
86.M. Peric´, R. J. Buenker, and S. D. Peyerimhoff, Mol. Phys. 59, 1283 (1986) .
87.W. Reuter, M. Peric´, and S. D. Peyerimhoff, Mol. Phys. 74, 569 (1991).
88.M. Brommer, B. Weis, B. Follmeg, P. Rosmus, S. Carter, N. C. Handy, H.-J. Werner, and P. J. Knowles, J. Chem. Phys. 98, 5222 (1993).